

Thinkbike workshop Australia

Arie Vijfhuizen 13-29 March

Contents

- Who am I?
- Corporate presentation Royal HaskoningDHV
- Background
- Policy making
- Basic Traffic Planning and Design
 - Basic Principles
 - Main requirements
 - Networks
 - Routes
- Sections & Junctions
 - General
 - Sections
 - Junctions
- Bicycle parking
- Manual design safe school environment
- Busy arterials

Who am I?

- Arie Vijfhuizen
- 52 years
- Married and two children (girl 16 and boy 13)

Leisure activity \rightarrow

 Running, internet, reading, photography, walking/cycling in the nature etc.

Work \rightarrow

- 6 ½ years RHDHV + about 20 years experience in: road design, road safety, spatial planning and project managing
- 24 years working for various Governments such as Ministry and various municipalities (including Amsterdam)

Royal HaskoningDHV Who we are, what we do

Corporate Presentation March 2015

What we do \rightarrow Enhancing Society Together

Our Mission	Contribute	
Our Culture	Care	
Our Ambition	Inspire	
Our Vision	Enable	

Where could you ask us about?

- Road design (also in 3D)
- Road safety
- Self explaining roads (with psychology)
- Save school environments
- Modelling (prognoses in traffic now and the future)
- Traffic lights and simulations
- Infrastructure
- Seconded at location
- Project managing
- A lot more about buildings, water, environment, etcetera.....

Background

- Best practices from 'cycling country' the Netherlands
- Royal HaskoningDHV: market leader cycling in the Netherlands
- Royal HaskoningDHV: member of the Dutch Cycling Embassy

The Netherlands & The World

MATCH = GATEWAY FOR EXPORT

EMBASSY

- > Independent
- > Organized
- > High quality
- > Translated
- > Dutch
- > Cycling Knowledge & expertise

Participants (members)

Rijksoverheid Ministerie van Infrastructuur en Milieu

Policy making

Cycling mobility needs a package of measures

Integral team of experts

Policy making for cycling (1)

Make use of a trigger (e.g. air quality, traffic flow, road safety, sustainability, ...)

Fistsersbond

- Make use of the 3 pilars:
 - Hardware
 - Software

-53-

AND SAVES TOU HONE

Arnhem

OU ENT

Bemmel

Elst

Policy making cycling (2)

- When you start making policy for cycling you have to realise:
 - To put the cyclist in the center
 - Cycling is part of a broader transport and traffic system

Basic Principles

Basic principles

Human being as measure of things \rightarrow \rightarrow design from cyclists' point of view

- Characteristics
- Integral design
- Function, form and use
- 5 main requirements

Basic principles

Human being as measure of things \rightarrow \rightarrow design from cyclists' point of view

Differences:

Age

- Gender
- Physical capacities
- Reason for cycling

function:use of the road as intended by the road authoritydesign:the physical design and layout properties of the infrastructureuse:actual use of the infrastructure and behaviour of the road user

NEEDED = DOOR TO DOOR MOBILITY POLICIES Directness

Cohesion

5 main requirements

Attractiveness Royal HaskoningDHV

Cohesion

Cohesive whole (network / route)

From origin to destination

- availability
- ease
- quality
- freedom

Cohesion

Complete network:

• parallel routes

Complete routes:

- centres / main destinations
- high potential main routes

Recognisability:

route as such is clearly ongoing

Directness

As direct as possible (route)

From origin to destination Minimum travel time

- traffic flow speed
- stops (number and length)
- detours (distance)

Directness

Distance:

- minimal detours
- minimal bending and winding
- avoid illegal movements

Time:

• minimal number of stops or delay

Safety

Vulnerability

- (mass / speed / no technical provisions)

Save conditions:

- Separation in time or space
- big residential areas
- avoid dangerous routes
- short journeys
- shortest = safest
- ease
- avoid conflicts
- reduce speed

Safety

Crossing traffic conflicts:

minimal number of meetings

Vehicle separation:

• in case of major speed differences

Speed reduction:

• at level crossings main traffic routes

Road categories:

recognizable, uniform solutions

Sufficient visibility (day and night) Avoid obstacles

Project 'The Forgiving Bicycle Path'

Client

Ministry of Infrastructure and Environment

Location The Netherlands

Completion 2015

Value (€) 0,5 < 1M

Project Manager Peter Morsink

Innovations in the Netherlands

Comfort

Minimum nuisance and delay (journey)

Avoid additional physical effort

- smoothness of pavement
- hilliness
- chance of stopping
- weather
- traffic

Attractiveness

Cycling has to be pleasant (journey)

Varies per person and per motif; Psychological: perception

e.g.:

- quiet
- smooth
- safe
- beauty (nature / buildings)

Also: social safety

Attractiveness

Social safety:

- social control at busy routes
- safe alternative
 - visibility (surroundings)
 - public lighting
 - maintenance

Traffic nuisance:

 separation with busy traffic (motor vehicles) related to surroundings

Network

How to design a network?

- Define the area
- Select Origins and Destinations
- Distinguish O and D by importance
- Connect Origins and Destinations
- Distinguish main routes
- Cover the whole area
- Connect to surrounding areas

Network: example Skopje

Network: example Sofia

Network: example Sofia

Network: example Sofia

Network: example Sofia

Routes

How to design a route?

- Define Origin(s) and Destination(s)
- Find and compare possible routes
- Advise related to main objectives
- Weight alternatives
- Think in opportunities
- Connect to other routes (existing and planned)

Cycleway Feasibility Study Associated With High Speed 2

Client Department for Transport

Location England, UK

Completion 2014

Project Manager Paul Stephens

Feasibility study and Design High Speed Bicycle Route 'RijnWaalpad'

Client

City Region Arnhem Nijmegen

Location

The Netherlands Arnhem - Nijmegen

Completion 2011

Value (€) 100 < 250 k

Project Manager Wim van der Wijk

Routes: where to implement

Along (existing) arterial or back streets?

- Arterial:
 - Usual straight
 - Destinations
 - Mental map
 - Social controlled
- Back streets (residential areas, parks):
 - Safe (except crossings)
 - Attractive
 - Relatively cheap
- Disadvantages back streets more easily to compensate
- Arterials always available as alternative

Routes: example pavement

Routes: example pavement

Routes: example closure

Routes: example contra flow

- Common practice
- Still legal exception

Routes: example shortcut

Routes: example shortcut

Routes: example shortcut / closure

Sections and Junctions

Bicycle Traffic Planning and Design

Special attention to:

Sections:

- Bicycles and pedestrians
- Buses and bicycles

Junctions / crossing:

- Priority crossings
- Roundabouts

How to design Bicycle Facilities

- Road categorization
- Through roads: Long distance traffic
- Distributor roads: Connects areas
- Access roads: Access to properties
- Urban area:

Consequences:

- Network
- Routes
- Sections
- Junctions

rsb

Sections

Design Basics – width requirements

The dynamic width (actual width plus deviation) of a cyclist on the road may be taken as **1 metre** (LTN 02/08)

TfL - 2.0 metres minimum width for overtaking with care, 2.5 metres for safe or social cycling, at least 3 metres needed for comfortable two-way cycling

Sustrans Handbook, 2014

Clearance to kerb / boundary

Sustrans, 2014 – provides parameters for a 1.2 metre to 1.5 metre on-carriageway cycle lane

Table 2.1 Minimum clearances

Object	Distance from wheel to object (metres)
Kerbs under 50 mm	0.25 m
Kerb over 50 mm	0.5 m
Sign posts, lamp columns, etc.	0.75 m
Continuous features, e.g. walls, railings, bridge parapets	1 m

LTN 02/08 – provides parameters for a 1.25 metre to 2.0 metre cycle lane – UNCLEAR, SUPERSEDED BY LTN 1/12 TABLE 7.4, WHICH REFLCTS SUSTRANS HANDBOOK

How to design Path / lane

Choose type of solution:

- Bicycle path or lane or bicycle street
- With or without mopeds
- One or two way bicycle traffic

Most important aspects:

- Separation
- Width
- Surface

Bicycle path / track

Separate path:

Distributor roads Main bicycle routes Car parking Physical space

- Function ►width, surface
- Volume of cyclists ►width
- Mopeds ►width
- One or two way ▶width

Bicycle path / track

Examples: Separate bicycle path

Bicycle path / track

Partition verge

- at least 0.35 m
- in the presence of lamp posts and/or two-way cycle track > 1.00 m
- in the case of vegetation or parking > 2.30 m
- from 30 m before side road < 0.35 m (for roads with V_{max} < 70 km/h)
- with fence > 0.70 m
- with barrier > 1.10 m

Bicycle lane:

- Little space ►low volume / speed
- Car parking •too high \rightarrow no lanes
- Function ►width
- Volume of cyclists ►width

Bicycle lane:

- Red colour
- Continuous line: 2.00 2.50
- Interrupted line: 1.50 2.00

Examples: Bicycle lanes

Up grade from lane to path:without using extra space

Bicycle street

Bicycle street:

- Two directions
- Red colour
- No signs
- Max 200 pcu/hr
- Speed reduction

Bicycle street

Examples: Bicycle street

See also: RijnWaalpad

Shared use

Alternative: do nothing(combined use)Speed reduction

30 km/h zone

- Traffic calming
 - Speed
 - Volume

When is shared use acceptable?

Table 14. Option diagram for road sections inside the built-up area

11:11

Bicycles and Pedestrians

Pedestrian area

• When is shared use acceptable?

Pedestrian area

Pedestrian area

- Bicycles / cyclists can raise attractiveness
- Usually not in indoor shopping centres
- Enforcement

Greenways

- How to combine different usage?
 - Commuter cyclists: heading for home
 - Strolling pedestrians: leisure

- Expose potential conflicts
- Natural feeling separation (It is logic)
- Social security

Cyclists and pedestrians – hotels 1

Cyclists and pedestrians - hotels 2

Cyclists and pedestrians – hotels 3

Bus lane → Separate Bicycle path

Exception

Exception

Combined use: Slow down speed

Combined use: Slow down speed

Without bus lane: 1. Separate path

2. Bus stop on bicycle lane

3. Bus bay(no bicycle lane)

4. Continuous bicycle lane

4. Continuous bicycle lane

5. Bicycle passage

5. Bicycle passage

5. Bicycle passage (accessibility bus stop)

6. Combined use Bus stop

Junctions

Main requirements

Applies to:

- Network
- Routes
- Sections
- Junctions

Function, form and use:

- Comprehensible
- Minimum number of conflicts
- Low traffic speed Design requirements:
- Cohesion not applicable

How to design junction / crossing

Choose type of solution:

- Give way + additions (refuge island, speed hump, narrowing)
- Roundabout
- Traffic lights
- Grade separate (bridge, tunnel)
- Do noting (or minor adjustments)

Junction / crossing

Type of junction: Distributor road – access road

	Table	24. Option table	e: district access roa Section 2: esta	id – estate acces ate access road o	ss road intersection so or solitary path Acce	lutions ss road
Distributor road	district access road, with or without (main) cycle route		l _{pcu} < 500 pcu/h			I _{pcu} > 450 pcu/h
		hourly intensity	no cycle route	cycle route	main cycle route	all situations
		1-1,000 pcu/h	right of way intersection		right of way intersection +	roundabout
		800 - 1,500 pcu/h	right of way intersection + supplementary measures		measures or roundabout	
		1,200 - 1,750 pcu/h	right of way intersection + supplementary measures, roundabout, intersection with TCS or grade-separated intersection (only for main cycle route where appropriate)			-
oike wo	Section 1: c	> 1,500 pcu/h	intersection with TCS or grade-separated (only for main cycle route where appropriate)			roundabout, intersection with TCS or grade- separated

SUIUIIC

10 Thinkbike w

2

Junction / crossing

Type of junction: Distributor roads

Table 25. Option table: district access road – district access road intersection solutions Section 2: district access road, with or without cycle route $(I_2 \le I_1)$ **Distributor road** 1,> 1,000 1, < 1,200 pcu/day pcu/dav 1: district access road, with or without hourly intensity no cycle route main cycle all situations (I_1) pcu/h cycle route route 500 - 1,500 single lane roundabout (main) cycle route roundabout (if necessary with bypass or two-lane) or TCS 1.200 - 1,750 roundabout (if (multi-lane) necessary with roundabout bypass or twowith cycle tunnel lane) or TCS in busiest lateral direction (or TCS) Section ' > 1,500 (multi-lane) (multi-lane) TCS or roundabout or roundabout with grade-separated TCS cycle tunnel in busiest lateral direction (or TCS)

Distributor road

Junction / crossing

Additions:

- Speed hump / plateau
- Refuge island
- Narrowing
- Bollards
- Public Lighting
- Continuous material, colour

Junction / crossing: Give way

Give way + additions:

- Function >type additions
- Volume of cyclists ►type, dimensions

Junction / crossing: Give way

Examples: Separate crossing

Junction / crossing: Give way

Examples: Give way

Junction / crossing: Roundabout

Multi lane roundabout:

Traffic lights

Bicycle friendly additions:

	2	include additional green light options for cyclists
	3	permit right turn through red
	4	give all cycling directions a green light at the same time
	5	accept motorised vehicle/ bicycle sub-conflicts
	6	set favourable standby time for cyclists
	7	increase cycling directions with priority along with public transport
	8	increase cycling directions with priority along with other directions
	9	set favourable phase sequence for cyclists turning left
	10	set green wave for bicycle traffic
	11	keep mutual conflicts between slow traffic outside of the control
	12	implement right turn through red
	13	introduce long distance detection/pre-request for cycle traffic
	14	introduce ECSL
I	15	increase flow capacity for motorised traffic
	16	set two-way green light

1

shorten cycle time

Examples bicycle friendly adds

Green wave

Rain sensitive traffic lights

Examples bicycle friendly adds

All directions green

Waiting time predictors

Examples bicycle friendly adds

Junction / crossing: Grade separate

Bridge or tunnel?

- Bridging ►tunnel
- Ecological ►tunnel
- Social safety bridge
- Costs ►bridge
- Spatial fit
 - ▶tunnel: "invisible"
 - bridge: architectural pleasing

Option: half bridge, half tunnel

Junction / crossing: Grade separate

Examples bridge / tunnel

Junction / crossing: Do nothing

Or add plateau / raised junction table

0

Priority

Priority

- Can cyclists have priority to cars?
- Main issue: safety

Thinkbike workshop Australia | 13-29 March

Priority

Inritconstructie met doorlopend trøttoir opritbanden 0,6m

3

Priority

Prefab Leicon drempels: lengte 1,0 meter hoogte: 8 cm

Bestaande fietspaden opbreken en afsluiten (groen aanbrengen) Bestaande fietsoversteek en plateau verwijderen

83

20

Constanting in a

拼

20

Priority

Inritconstructie met doorlopend trøttoir opritbanden 0,6m

Prefab Leicon drempels: lengte 1,0 meter hoogte: 8 cm

Bestaande fietspaden opbreken en afsluiten (groen aanbrengen) Bestaande fietsoversteek en plateau verwijderen

R

H.

1.1.1.1

Roundabouts

Why built roundabouts?

- High capacity
- Safe

Capacity

- Typical capacity per type of roundabout
 - single lane roundabout
 - two-lane roundabout, single lane exits
 - two-lane roundabout, two-lane exits
 - turbo roundabout

25.000 veh/24h 30.000 veh/24h 40.000 veh/24h 60.000 veh/24h

In-company training Bicycle Traffic Planning and Design

Thinkbike workshop Australia | 13-29 March

- Main safety advantages of roundabouts
 - actual speed is low
 - the number of conflicts is reduced
- no crossing conflicts
- predictable behavior (keeping lanes)

crossing

32 conflicts

9 conflicts

merging

8 conflicts

Risk figures

Type of junction Inside build up area	Accidents with injuries per million motor vehicle kilometers	Victims per accident with injuries	Fatalities per victim
3 legs with traffic lights4 legs with traffic lights3 legs without traffic lights4 legs without traffic lights	0,13 0,15 0,09 0,08	1,21 1,19 1,92 1,56	0,04 0,05 0,07 0,06
roundabout (without traffic lights)	0,06	1,18	0,04

Important aspects:

- Inform road user in time
- Entrances should connect radial
- Narrow entrance and exit lanes
- Small entrance and exit radius
- Wide bend out
- Raise central island

Π.

77

51

In-company training Bicycle Traffic Planning and Design

Example

In-company training Bicycle Traffic Planning and Design

Thinkbike workshop Australia | 13-29 March

- Safe: Low speed
 - Speed hump

Safe: Blind spot

Priority: Single lane roundabout

Outside build-up area Priority to cars

Inside build-up area Priority to bicycles

Priority: Turbo roundabout

Typical accident type

• On turbo roundabouts with give way to **BICYCLES**:

Bad visibility due to other cars

13 4

Bicycle crossing

- With give way to **Bicycles**:
 - Smooth flow
 - On going coloured surface

Bicycle crossing

- With give way to CARS:
 - Zig zag
 - No coloured surface

Spatial need turbo roundabout

Reconstruction junction with traffic lights \rightarrow turbo roundabout

Royal HaskoningDHV and roundabouts

WSD

Bicycle Parking

Main requirements

Applies to:

- Network
- Routes
- Sections
- Junctions
- Parking

Level of quality related to function and (expected) use

Royal HaskoningDHV

Function, form and use:

- User convenience
- Theft prevention

Essential for stimulating use of bicycle

Cyclists' point of view:

- Theft prevention
- Damage prevention
- Clean and dry storage

Road authority point of view:

- Preventing blockage / nuisance for pedestrians
- Appearance public area

Origin: Individual dwelling

- Balcony
- Neighbourhood storage
- Lockable storeroom

Destination:

- Private storage / parking
- Public parking
 - Free or paid
 - Supervised or unattended

Examples origin:

- Balcony
- Lockable storeroom
- Neighbourhood storage

Examples destination:

- Private storage / parking
- Public parking
 - Free or paid

How to design bicycle parking

Location typology:

- City centre:
 - shopping
 - night life
 - culture visits
 - working
 - living
- Old residential areas:
 - no indoor facilities
 - little public space
 - high dwelling density

- New residential areas:
 - indoor facilities?
 - more public space
 - lower dwelling density
- Companies / institutes:
 - workers
 - visitors
- Public transport stops:
 - "in a hurry"
 - theft prevention

- •Usage, e.g.:
- shopping:
 - relatively short stay
 - easy use
 - secure
- working:
 - long stay
 - comfortable (dry, secure)
 - indoor / own property
- public transport:
 - long stay
 - close by ("hurry") & on the way

Needed type of facility:

What is important:

- ease of use?
- stability?
- theft prevention?
- clean and dry storage?

Fietsparkeur

Bicycle Parking Facility Utrecht Central Station

Client

Ector Hoogstad Architecten

Location

Utrecht, The Netherlands

Completion ongoing

Value (€) 0,1 < 0,5 M

Project Manager Wim van der Wijk

Manual design safe school environment

Manual design safe school environment

Cliënt: Amsterdam Urban Region

- Examples and answers to frequently asked questions
- To use for each location

Stakeholders

- The school, teachers
- The children and their parents
- The municipality
- The police and other emergency services
- Public transport society
- Residents
- Consultancies
- Businesses and shops in the vicinity, etc.

Working group

Actions:

- Determining the boundary of the school zone
- Analysing school environment
- Home-school routes

Goal and tasks:

- Safe school environment
- Self explaining roads → Infrastructure
- Agreement on measures

General mindset

Research

Inventory the traffic school-home unsafe points on the route

Design school environment

- Street for school is completely car-free (or at times when school starts and goes out)
- Entrance school never in a 50 km/h street
- If possible use multiple school entrances (walkers, cyclists and motorists)
- Children not directly from schoolyard on the road (running or cycling) → use for instance number signs

School-Home routes

■ Safe walking / cycling routes to school → important

Follow-up

Implementation of measures

- In the holidays
- Communication

Evaluation (monitoring)

- Speed Measurements
- Behaviour in Traffic
- Enforcement

Method safe school environments

Method "Octopus"

Method "Julie"

Method safe school environments

Method "Child Ribbon"

Method "School zone"

10 rules for a safe school environment

- 1. Safe route to school
- 2. Schoolyard entrance is safe
- 3. Safe crosswalk
- 4. There is a safe school exit
- 5. Children have unobstructed view
- 6. Sufficient waiting area for parents
- 7. Bike racks for parents
- 8. Sufficient bike storage for children
- 9. If applicable: the school bus gets the best parking space
- 10. (Traffic parent and) traffic Commission

Julie - concept

- Apply limited
- Attention function
- Crosswalks
- Kiss & Ride
- School side

Julie - concept

Busy arterials

Example

Example

Questions

