

GB Geotechnics (Australia) Pty Ltd Web: gbg-group.com.au E-Mail: info@gbgoz.com.au ABN 77 009 550 869

Report

Geotechnical Investigation for Coastal Erosion Vulnerability Assessment.

Dongara and Port Denison, Shire of Irwin WA.

DOCUMENT HISTORY

DETAILS

Project number	3177A
Document Title	Geotechnical Investigation for Coastal Erosion Vulnerability Assessment
Site Address	Dongara and Port Denison, Shire of Irwin WA
Report prepared for	The Government of Western Australia, Department of Transport

STATUS AND REVIEW

Revision	Prepared by	Reviewed by	Date issued
0	Peter Eccleston	Baqir Al asadi	18 November 2025

DISTRIBUTION

Revision	Electronic	Paper	Issued to
0	1	0	Michael Meuleners, Tim Stead - DoT

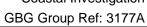
COMPANY DETAILS

Business name	GB Geotechnics (Australia) Pty Ltd
ABN	77 009 550 869
Business address	1/11 Gympie Way, Willetton WA 6155
Phone	0438 398 800
Web	gbg-group.com.au
Email	info@gbgoz.com.au

GBG Group Ref: 3177A

EXECUTIVE SUMMARY

A geotechnical investigation has been carried out as part of a coastal erosion assessment at Dongara and Port Denison, in the Shire of Irwin, Western Australia. During the investigation, ground geophysical and intrusive geotechnical testing were conducted within a 1320m corridor of coastal beach and dune formations along the Dongara Foreshore, and an 830m corridor of coastal beach and dune formations along the Port Denison Foreshore, and which have been identified as an at-risk site at the request of the Local Government Authority.


The investigation scope consisted of acquiring multi-channel analysis of surface waves data as a series of specified transects either along-shore (parallel to the coast) or cross-shore (perpendicular to the coast), and cone penetration testing at spot locations along these transects. This was supplemented with geological mapping of surface rock outcrops and topographic survey using high resolution aerial photogrammetry for the generation of a surface level model and orthomosaic image.

The acquired MASW dataset was processed for the generation of seismic velocity sections along the transects showing variations in the seismic shear wave velocity of the subsurface material to a target depth of 10-15m below ground level (BGL). The seismic velocity sections were calibrated with the CPT plots and demarcated into velocity ranges representing different material types and conditions for the generation of interpreted geological sections consisting of loose to compacted sediment and variably weathered to fresh rock.

The interpreted geological sections have been compiled to develop subsurface models of the level to rock substrate (relative to AHD) and overlying sediment thickness within the region between the foreshore and the settlement. This model will be used to assess the potential vulnerability of the site to erosion and future inundation risk, and whether there is a continuous rock barrier located below the ground surface of sufficient strength and height that may prevent the advancement of erosion to the settlement.

The following observations have been made:

- Interpreted rock substrata across both the Dongara and Port Denison sites was observed to be generally deep and rising away from the beach with rising topography.
- Sand thickness across the sites generally ranged from 8m to 14m, with isolated zones of shallower rock with an overlying sand thickness in the 4-8m range
- No rock outcrops were observed on either site, however some surface hard material (likely calcarenite) was observed along the northern section of Port Denison beachfront.

CONTENTS

DOCUMENT HISTORY	1
EXECUTIVE SUMMARY	2
CONTENTS	3
INTRODUCTION	4
2 INVESTIGATION SITE	4
3 INVESTIGATION METHODOLOGY	7
3.1 FIELD SURVEY LOGISTICS	7
3.2 MULTI-CHANNEL ANALYSIS OF SURFACE WAVES	8
3.3 CONE PENETRATION TESTING	10
3.4 SPATIAL POSITIONING AND PHOTOGRAMMETRY	11
RESULTS AND INTERPRETATION	
4.1 PRESENTATION OF RESULTS	12
4.2 SEISIMC SHEAR WAVE VELOCITY SECTIONS	13
4.3 INTERPRETED GEOLOGICAL SECTIONS	13
4.4 CALIBRATION WITH GEOTECHNICAL TESTING AND ROCK MAPPING	14
4.5 MODELLED LEVEL TO TOP OF ROCK AND SEDIMENT THICKNESS	15
5 PROJECT SUMMARY	16
APPENDIX A – INVESTIGATION SITE MAP	18
APPENDIX B – GEOPHYSICAL AND INTERPRETED SECTIONS	19
APPENDIX C – MODELLED SURFACE LEVEL AND SEDIMENT THICKNESS	20
APPENDIX D _ CONE PENETRATION TEST PLOTS	21

GBG Group Ref: 3177A

1 INTRODUCTION

At the request of the Government of Western Australia Department of Transport (DoT), GBG Group carried out a geotechnical investigation at Dongara and Port Denison, Shire of Irwin, in October 2025. During the investigation, seismic geophysical testing and intrusive geotechnical testing were conducted within a 1320m corridor of coastal beach and dune formations along the Dongara Foreshore, and an 830m corridor of coastal beach and dune formations along the Port Denison Foreshore, and which have been identified as an at-risk site at the request of the Local Government Authority.

The objective of the investigation was to provide detailed mapping of the extent, elevation and consistency/strength of the rock underlying the coastal beach and dune formations. In particular, the key outcome of the investigation was to develop a subsurface model of the level to competent rock substrate (relative to AHD) within the region between the foreshore and the settlement. This model will be used to assess the site's potential vulnerability to erosion and future inundation, and to determine whether a continuous rock barrier of sufficient strength and height exists below the ground surface that could prevent erosion from advancing toward the settlement.

To achieve the project objectives, data from the following investigation methods was acquired, processed and analysed to obtain the required subsurface information within the anticipated geological conditions:

- 1. **Geological mapping** of surface rock outcrops within the study area using high-resolution photogrammetry.
- Geophysical testing by way of Multi-channel Analysis of Surface Waves (MASW) to obtain seismic shear wave velocity models related to variations in subsurface material stiffness with depth.
- 3. **Topographic survey** using differential GNSS receiver and photogrammetry.

2 INVESTIGATION SITE

The investigation was carried out across two separate sections of coastal beach and dune formation at Dongara and Port Denison. The extents of the sites are shown as a yellow dashed polygon in Figures 1 and 2.

Data was acquired as a series of transects for the seismic geophysical testing. These transects were positioned to make optimal use of existing roads, tracks, and beach areas while minimising impacts on native vegetation and to ensure an efficient, effective, and cost-efficient acquisition methodology. Data was not acquired where surface obstructions were present, such as thick vegetation, steep topography or where the beach was inundated with seawater. Photographs showing the typical site conditions are provided in Figure 3. Topography at the site was generally flat to undulating, and surface level ranged from 0.5mAHD to 9mAHD at the Port Denison site and 0.5mAHD to 14mAHD for the Dongara site. Topographic maps showing the surface level are provided in Appendix C, drawing 3177A-15 and -20.

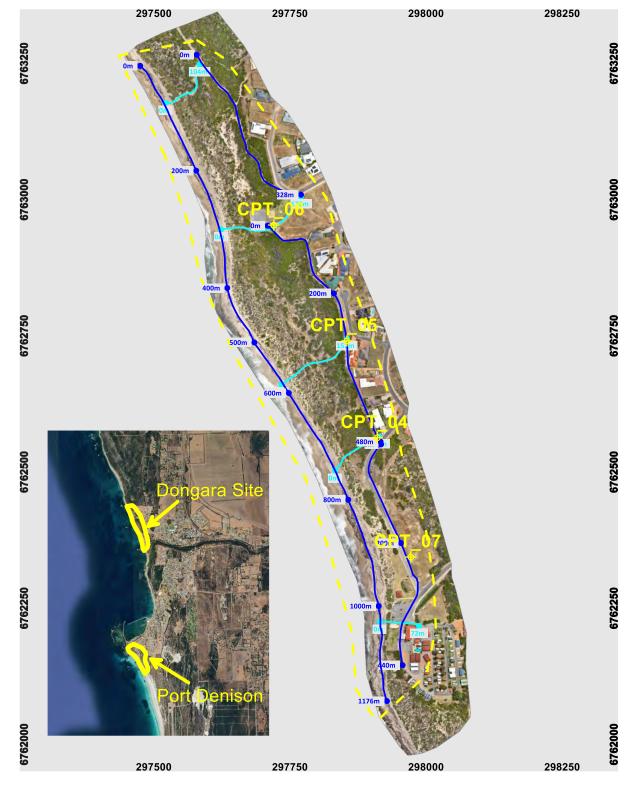


Figure 1: The extent of the geophysical investigation (yellow polygon) at the Dongara site. Aerial imagery from drone photogrammetry (main image) and Google Maps (inset image).

Figure 1: The extent of the geophysical investigation (yellow polygon) at the Port Denison site. Aerial imagery from drone photogrammetry (main image) and Google Maps (inset image).

Figure 3: Site conditions at Dongara and Port Denison including the northern end of the Port Denison along-shore transect on the beach (left image) and northern along-shore transect along the track at Dongara (right image).

3 INVESTIGATION METHODOLOGY

3.1 FIELD SURVEY LOGISTICS

Geophysical data acquisition was carried out on 20-24 October 2025 by a two-person team from GBG Group consisting of qualified geophysicists. CPT data acquisition was carried out by a technician from Probedrill on 20-21 October 2025.

Prior to the commencement of data acquisition, a site assessment was carried out to identify and address potential concerns and issues, including the placement of and access to the MASW transects.

The site work for the investigation at the Dongara site consisted of a total of 3032m of MASW profiling acquired as 4 along-shore transects (parallel to the coast) and 5 cross-shore transects (perpendicular to the coast). The site work for the investigation at the Dongara site consisted of a total of 1824m of MASW profiling acquired as 5 along-shore transects (parallel to the coast) and 3 cross-shore transects (perpendicular to the coast). Details of the acquired MASW transects are provided in Table 1. The extents of the MASW transects overlaid onto aerial imagery are shown in Appendix A drawing 3177A-01 and -02.

Table 1 - Acquired MASW Transects - Dongara (Coordinates in GDA2020, MGA Zone 50).

Transect	Orientation	Start Co	oordinate	End Co	ordinate	Length
ID	Orientation	East	North	East	North	(m)
MASW-01	Along-shore	297471.61	6763245.55	297924.84	6762079.63	1176
MASW-02	Along-shore	297575.47	6763266.01	297767.05	6763008.94	328
MASW-03	Along-shore	297705.79	6762952.15	297913.22	6762555.60	480
MASW-04	Along-shore	297914.00	6762550.70	297953.68	6762145.31	440
MASW-05	Cross-shore	297517.90	6763177.37	297581.11	6763248.65	104
MASW-06	Cross-shore	297619.77	6762945.45	297767.39	6763005.96	176
MASW-07	Cross-shore	297731.36	6762660.91	297851.22	6762745.68	152
MASW-08	Cross-shore	297829.11	6762502.55	297910.63	6762565.18	104
MASW-09	Cross-shore	297911.68	6762225.29	297983.81	6762217.77	72

Table 2 - Acquired MASW Transects - Port Denison (Coordinates in GDA2020, MGA Zone 50).

Transect	Orientation	Start Co	oordinate	End Cod	ordinate	Length
ID	Orientation	East	North	East	North	(m)
MASW-10	Along-shore	297472.55	6759351.86	297555.02	6759273.84	128
MASW-11	Along-shore	297589.45	6759253.83	297934.07	6758689.88	664
MASW-12	Along-shore	297630.69	6759431.85	297661.04	6759334.59	104
MASW-13	Along-shore	297837.65	6759347.23	297935.19	6759225.49	152
MASW-14	Along-shore	297927.38	6759195.77	297969.47	6758741.88	488
MASW-15	Cross-shore	297498.53	6759370.02	297613.97	6759430.18	136
MASW-16	Cross-shore	297716.52	6759132.45	297761.87	6759167.39	56
MASW-17	Cross-shore	297865.80	6758828.67	297940.47	6758882.21	96

MULTI-CHANNEL ANALYSIS OF SURFACE WAVES 3.2

MASW is a seismic geophysical method that utilises phase and frequency information to calculate Shear wave (S-wave) velocities in vertical layer models, averaged over an array of linearly spaced geophones. These 1D models can be laterally stacked to provide 2D cross-sections of S-wave velocity in layers. Under most circumstances, it is an indicator of material stiffness and as such, the method can be used to provide quantitative results on the compaction of the subsurface material.

MASW data was acquired using a Geode (Geometrics) seismograph connected to a receiver array of 24 geophones set at 1m intervals for a total array length of 23m. The receiver array was mobilised on a land streamer whereby the geophones are mounted on base plates attached to webbing, and either towed behind a 4WD vehicle or manually pulled by the field team. Seismic energy was generated using summed impacts from a softened steel sledgehammer with source points made at a constant offset from the receiver array. MASW acquisition parameters are provided in Table 3.

Table 3 – MASW Acquisition Parameters

Parameter	Value
Number of geophones	24
Geophone spacing	1 m
Array length	23 m
Geophone frequency	4.5 Hz
Record length	1 s
Sample interval	0.125 ms
Source	40kg AWD / 5.9kg Sledgehammer
Source offset	4 m
Sounding interval	8m
Source stacks	3

The MASW data was observed to be of high quality with the seismic records having high signal-to-noise ratio. The generated overtone images, which plot phase velocity against frequency, mostly showed a prominent dispersion curve corresponding to the surface wave component. The MASW data was processed using SurfSeis version 6++ (Kansas Geological Survey, 2017) with the following processing routine:

- 1. Import acquired seismic data files and apply geometry, including geophone spacing, source offset and sounding interval.
- 2. Generate overtone images giving the percentage intensity of phase velocity versus frequency for each seismic record (Figure 4).
- 3. Pick the maximum intensity across the useful range of frequencies for each overtone image resulting in a dispersion curve.
- 4. Run the dispersion curves through a 10-layer inversion algorithm to produce 1D soundings illustrating the variation of S-wave velocity with depth.

The S-wave velocity soundings were compiled with reference to distance along the transects and gridded with Surfer version 25 (Golden Software, 2023). The resulting contoured cross-sections show the variation in the modelled S-wave velocity of the subsurface material in metres per second laterally along each of the transects and with elevation.

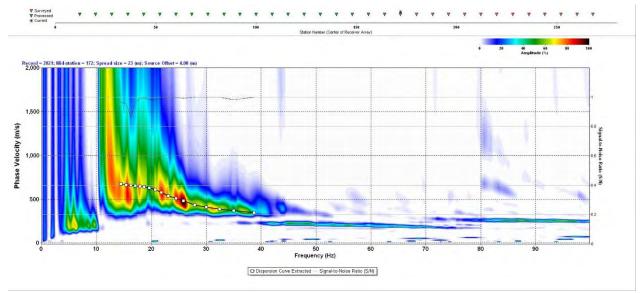


Figure 4: MASW overtone image with high signal-to-noise ratio and picked dispersion curve.

3.3 CONE PENETRATION TESTING

CPT is a geotechnical test method used to evaluate soil properties and assess subsurface stratigraphy, including the sediment/rock interface at spot locations. The method involves pushing a calibrated cone and rod into the ground with a measured force while recording the resulting frictional resistance with depth. The data are plotted against depth to assess sediment compaction and to identify the refusal depth, which indicates the depth to competent rock.

Testing was carried out using a M2 (Morooka) 11 tonne track mounted CPT Rig, specifications of which are provided in Appendix D. The test points were initially marked out at suitable locations within 2m of the intersecting geophysical transects. Dial Before You Dig enquiries and, if necessary, utility locating was carried out prior to testing commencing.

CPT readings were made with sufficient ground bearing pressure to obtain a target depth of 10m or prior refusal. Where shallow refusal depths of less than 2m were encountered, when deemed necessary, an additional offset test was made to ascertain whether shallow refusal was due to a rock floater or other shallow obstruction. A photograph of CPT data acquisition is shown in Figure 5.

Figure 5: CPT data acquisition during a previous coastal investigation.

3.4 SPATIAL POSITIONING AND PHOTOGRAMMETRY

Spatial positioning of the acquired geophysical transects was achieved using an Atlas Hemisphere (S631) with Satellite-Based Differential Correction Service (L-Band) receivers with a coordinate recorded for each MASW sounding location. Coordinates of the geophysical transects have been provided in GDA2020, MGA zone 50 for the horizontal component and Australian Height Datum (mAHD) for the vertical component. An accuracy of +/-0.2m is expected for both vertical and horizontal components.

To achieve precise reduced levels referenced to AHD, the positioning data was acquired with Real-Time Kinematics (RTK) using Survey marker A 97 within the survey area as base station to broadcast coordinate corrections in real time via NTRIP. Details of the survey marker used for this investigation are provided in Table 4.

Parameter	Value
Survey Marker (Spike)	A 97
Latitude	S 29 16 38.39320
Longitude	E 114 54 55.52893
Derived GDA2020 Ellipsoidal height (m)	-16.518

Table 4 - Details of Survey Marker Station

A reduced level of 0.0mAHD is considered to be the Mean Sea Level (MSL) for the purpose of this investigation. This relationship for Mean Sea Level was established by the Geoscience Australia Survey in 1971*.

Aerial photogrammetry was carried out to obtain an up-to-date high-resolution aerial image and a surface level model of the survey area. Data was acquired with a Mavic 3E (DJI) multi-rotor drone with RTK capability for the capture of multiple overlapping images.

^{*}http://www.ga.gov.au/scientific-topics/positioning-navigation/geodesy/datums-projections/australian-height-datum-ahd

The acquired photogrammetry images were processed using Metashape Professional (Agisoft) for the generation of a point cloud, surface level model and orthomosaic image of the survey area. Note: for this investigation, vegetation has not been removed during the processing stage and as such, the height of existing vegetation needs to be considered when assessing surface levels.

4 RESULTS AND INTERPRETATION

4.1 PRESENTATION OF RESULTS

The results of the geotechnical investigation at Dongara and Port Denison, Shire of Irwin are presented in Appendices B and C of this report as follows:

Appendix B - Geophysical and Interpreted Sections

- 3177A-03. Transect 1 (0-600m) seismic S-wave velocity model and interpreted geological section.
- **3177A-04.** Transect 1 (600-1176m) seismic S-wave velocity model and interpreted geological section.
- 3177A-05. Transect 2 seismic S-wave velocity model and interpreted geological section.
- 3177A-06. Transect 3 seismic S-wave velocity model and interpreted geological section.
- 3177A-07. Transect 4seismic S-wave velocity model and interpreted geological section.
- 3177A-08. Transect 5, Transect 6 and Transect 7 seismic S-wave velocity model and interpreted geological section.
- 3177A-09. Transect 8 and Transect 9 seismic S-wave velocity model and interpreted geological section.
- 3177A-10. Transect 10 seismic S-wave velocity model and interpreted geological section.
- 3177A-11. Transect 11 seismic S-wave velocity model and interpreted geological section.
- 3177A-12. Transect 12 and Transect 13 seismic S-wave velocity model and interpreted geological section.
- 3177A-13. Transect 14 seismic S-wave velocity model and interpreted geological section.
- 3177A-14. Transect 15, Transect 16 and Transect 17 seismic S-wave velocity model and interpreted geological section.

Appendix C - Modelled Level to Surface and Sediment Thickness

- 3177A -15. Contoured surface level models derived from aerial photogrammetry Dongara.
- 3177A -16. Contoured level to modelled top of rock Dongara.
- 3177A -17. Class post map level to modelled top of rock Dongara.
- 3177A -18. Contoured modelled sand thickness over rock / Depth to top of rock Dongara.

- 3177A -19. Class post map modelled sand thickness over rock / Depth to top of rock Dongara.
- 3177A -20. Contoured surface level models derived from aerial photogrammetry Port Dension.
- 3177A -21. Contoured level to modelled top of rock Port Dension.
- 3177A -22. Class post map level to modelled top of rock Port Dension.
- 3177A -23. Contoured modelled sand thickness over rock / Depth to top of rock Port Dension.
- 3177A -24. Class post map modelled sand thickness over rock / Depth to top of rock Port Dension.

4.2 SEISIMC SHEAR WAVE VELOCITY SECTIONS

The seismic S-wave velocity (Vs) sections modelled from the MASW data acquired along the alongshore and cross-shore transects are presented at the top of each drawing in Appendix B. These sections show variations in the modelled Vs as per the colour scale, with velocity ranging from 150m/s to 1000m/s representing a wide range of material types and conditions.

Seismic S-wave velocity is governed by the elastic properties of the medium that the wave propagates through, as shown in the equation below. In particular, it is primarily a function of soil density, void ratio and effective stress. As such, calculated values can provide a useful guide to the subsurface material condition, with increasing velocity an indication of increasing material stiffness.

Seismic S-wave velocity
$$V_{\scriptscriptstyle S} = \sqrt{\frac{G}{
ho}}$$

where; G =Shear modulus, $\rho =$ In-situ material density

4.3 INTERPRETED GEOLOGICAL SECTIONS

Below the seismic S-wave velocity sections are the interpreted geological sections based on detectable seismic velocity contrasts. Four classes have been defined representing different subsurface material conditions as follows:

Very low seismic S-wave velocity (Vs <250m/s). Representing the lowest seismic velocities
modelled during the investigation, this class is interpreted as sediment of low compaction from
either the beach or dune formation.

- 2. Low seismic S-wave velocity (Vs 250-550m/s). This class is interpreted as sediment of moderate to high compaction due to increased depth of cover on the beach and dune formation, or due to development adjacent to the settlement.
- 3. Moderate seismic S-wave velocity (Vs 550-750m/s). This class is interpreted as low strength variably weathered rock. Where continuous and at the base of the sections, it likely represents a transitional zone to stronger, more competent underlying rock. Where present as isolated anomalies within the interpreted sediment, it is likely to represent partially lithified sediment or rock lenses.
- 4. Moderate to high seismic wave velocity (Vs >750m/s). This class is interpreted as moderate strength slightly weathered to fresh rock. It is typically observed at the base of the sections as competent rock underlying the variably weathered rock.

CALIBRATION WITH GEOTECHNICAL TESTING AND ROCK MAPPING

The results of the CPTs are presented in Appendix D, showing the plots of cone tip resistance in mega-Pascals against depth in metres. The CPT plots are also shown in Appendix B and overlayed onto the interpreted geological sections, with the following observations being made:

- CPT-01 on Transect 14 refusal (55MPa) at 3.00m.
- CPT-12 on Transect 04 no refusal to 10.2m.
- CPT-03 on Transect 13 refusal (64MPa) at 7.50m.
- CPT-04 on Transect 03 no refusal to 10.2m.
- CPT-05 on Transect 03 refusal (51MPa) at 3.54m
- CPT-06 on Transect 03 refusal (90MPa) at 1.84m
- CPT-07 on Transect 04 refusal (86MPa) at 5.66m

The differences in the modelled level to low compaction and moderate compaction sediment as interpreted from the MASW transects and from the CPT data can be attributed to the fact that the geophysical methods used are broad scale, whilst the CPT is a point method. Geophysical methods sample a volume of subsurface material, with the calculated depths at any particular point representing an average value over this volume. The CPT method samples the subsurface directly below the probe and is influenced by local variations in the subsurface, such as rock floaters, highly weathered zones or lenses of partially lithified sediment. The differences in the type of subsurface sampling of the methods will not adversely affect the results, as the CPT results have been used to constrain the geophysics interpretation, and as such, the results represent the best modelled fit between the datasets.

4.5 MODELLED LEVEL TO TOP OF ROCK AND SEDIMENT THICKNESS

Subsurface models for the level to top of rock substrate and overlying sand thickness within the region between the coastal foreshore and settlement are presented in Appendix C. These have been generated by digitising the interface between the interpreted sediment and underlying rock profile from the interpreted geological sections along the acquired along-shore and cross-shore transects. The modelled sand thickness was then generated by subtracting this from the surface elevation. The sand thickness can also be considered to be the depth to top of rock where rock exists within the depth of investigation. Interpreted rock depths and levels should be analysed in conjunction with interpreted seismic sections in Appendix B. The following subsurface models have been provided:

- Contoured Surface Level Model Dongara (drawings 3177A-15) Omitted. To be provided at a later date
- Contoured Surface Level Model Port Denison (drawings 3177A-20) Omitted. To be provided at a later date
- Contoured Level to Top of Rock Substrate Dongara (drawings 3177A-16) this presents
 the level to the top of rock substrate ranging from <-7mAHD to 5mAHD.
- Contoured Level to Top of Rock Substrate Port Denison (drawings 3177A-21) this presents the level to the top of rock substrate ranging from <-14mAHD to 4mAHD.
- Classed Post Map Level to Top of Rock Substrate Dongara (3177A-17) this presents
 the level to the top of rock substrate along the acquired transects at 2m level increments from
 <-8mAHD to >4mAHD.
- Classed Post Map Level to Top of Rock Substrate Port Denison (3177A-22) this
 presents the level to the top of rock substrate along the acquired transects at 2m level
 increments from <-6mAHD to >6mAHD.
- Contoured Sand Thickness / Depth to Top of Rock Dongara (3177A-18) this presents the thickness of sand overlying the rock substrate ranging from 6mBGL to >14mBGL.
- Contoured Sand Thickness / Depth to Top of Rock Port Denison (3177A-23) this presents the thickness of sand overlying the rock substrate ranging from 5mBGL to >14mBGL.
- Classed Post Map Sand Thickness / Depth to Top of Rock Dongara (3177A-19) this
 presents the thickness of sand overlying the rock substrate along the acquired transects at
 1m depth increments from <6mBGL to >11mBGL.
- Classed Post Map Sand Thickness / Depth to Top of Rock Port Denison (3177A-24) this presents the thickness of sand overlying the rock substrate along the acquired transects at 1m depth increments from <2mBGL to >12mBGL.

GBG Group Ref: 3177A

The following limitations should be considered when assessing the subsurface models for the level to top of rock substrate and overlying sand thickness:

The expected accuracy of the top of rock substrate modelled from this investigation is +/-0.5mAHD. Similarly, an accuracy of +/-0.5m is expected for the modelled sand thickness over rock. The quoted accuracies are based on consideration of the accuracy of the GNSS receivers used during the site work, 1D inversion of the MASW dataset using a 10-layer model, and expected undulations in the sand/rock interface. Note that the quoted accuracies are only valid along the geophysical transects. Values given between transects have been interpolated in the contour maps, and as such, the accuracy in this case is indeterminable.

The generated contours will give the general trend of the top of rock profile; however, they will not image local variations when the extent of these is less than transects spacing. Spatially small features such as karst, sinkholes, or pinnacle features, may not be imaged. The significance of this limitation is considered minor for this investigation, since although local geological features such as pinnacles may not be represented in the data, the generated surface of the top of rock will show the broad trends in the geology over the site, which is suitable for a coastal erosion assessment.

Transition zones, including between fresh and weathered rock and between sediment and lithified/partially lithified sediment, may be gradational, and as such, the interface between these layers is not well defined.

The calculated levels to the top of rock will only be valid along the geophysical transects. Values shown on the contour maps, not on the transects, have been interpolated using the krigging algorithm, and as such, the accuracy of these levels is indeterminable. The contour surface will give the general trend of the interface; however, it may not image local variations. It is recommended that the interpreted geological sections presented in Appendix B be used to obtain more accurate top of rock levels and overlying sand thickness.

5 PROJECT SUMMARY

A geotechnical investigation has been carried out as part of a coastal erosion assessment at Dongara and Port Denison, in the Shire of Irwin, Western Australia. During the investigation, ground geophysical and intrusive geotechnical testing were conducted within a 1320m corridor of coastal beach and dune formations along the Dongara Foreshore, and an 830m corridor of coastal beach and dune formations along the Port Denison Foreshore, and which have been identified as an at-risk site at the request of the Local Government Authority.

The investigation scope consisted of acquiring multi-channel analysis of surface waves data as a series of specified transects either along-shore (parallel to the coast) or cross-shore (perpendicular to the coast). This was supplemented with geological mapping of surface rock outcrops and topographic survey using high-resolution photogrammetry for the generation of a surface level model and orthomosaic image.

The acquired MASW dataset was processed for the generation of seismic velocity sections along the transects showing variations in the seismic shear wave velocity of the subsurface material to a target

depth of 10-15m below ground level. The seismic velocity sections were calibrated with the CPT plots and demarcated into velocity ranges representing different material types and conditions for the generation of interpreted geological sections consisting of loose to compacted sediment and variably weathered to fresh rock.

The interpreted geological sections have been compiled to develop subsurface models of the sediment thickness within the region between the foreshore and the settlement. This model will be used to assess the potential vulnerability of the site to erosion and future inundation risk, and whether there is a continuous rock barrier located below the ground surface of sufficient strength and height that may prevent the advancement of erosion to the settlement.

The methods used during the investigation are geophysical and as such the results are based on indirect measurements and the processing and interpretation of seismic wave signals calibrated with intrusive geotechnical testing. The findings in this report represent the professional opinions of the authors, based on experience gained during previous similar investigations.

We trust that this report and the attached drawings provide you with the information required. If you require clarification on any points arising from this investigation, please do not hesitate to contact the undersigned on 08 9354 6300.

For and on behalf of

GB Geotechnics (Australia) Pty Ltd

Peter Eccleston

Principal Geophysicist

APPENDIX A – INVESTIGATION SITE MAP

INVESTIGATION SITE MAP - DONGARA

Drawing to be used in conjunction with GBG report 3177A.

Map Projection GDA2020 MGA Zone 50.
Aerial image from Google Earth Pro and GBG photogrammetry.

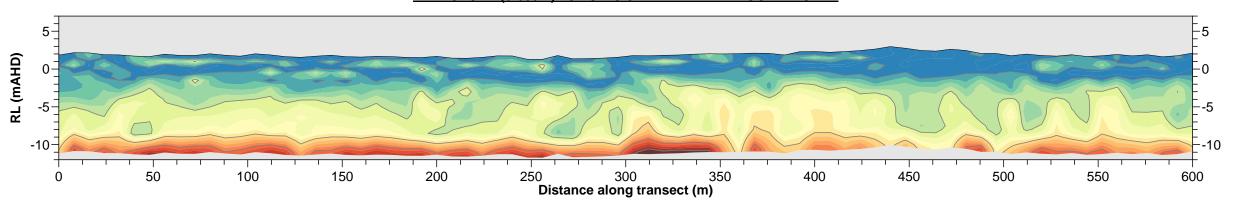
INVESTIGATION SITE MAP - PORT DENISON

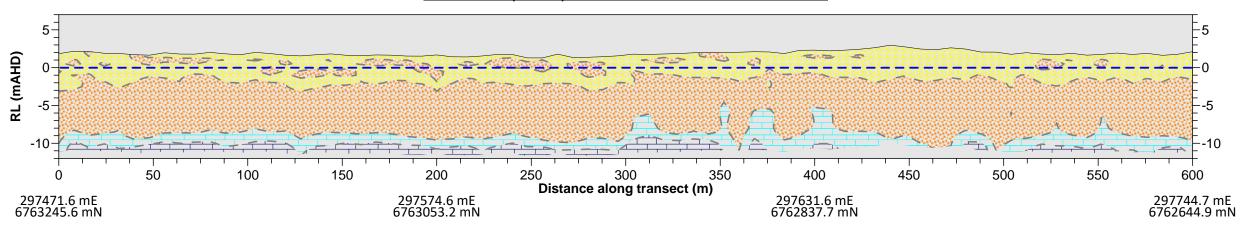
NOTES

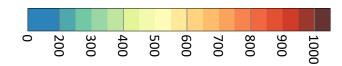
Drawing to be used in conjunction with GBG report 3177A.

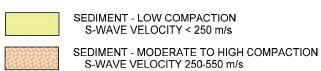
Map Projection GDA2020 MGA Zone 50.

Aerial image from Google Earth Pro and GBG photogrammetry.


Date	13 November 2025	Paper Size	A3
Scale	1:2500	Drawn	PJE
Drawing	3177A-02	Revision	0

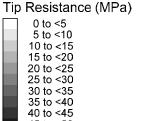

APPENDIX B - GEOPHYSICAL AND INTERPRETED SECTIONS


TRANSECT 1 (0-600m) - SEISMIC SHEAR WAVE VELOCITY MODEL


TRANSECT 1 (0-600m) - INTERPRETED GEOLOGICAL SECTION

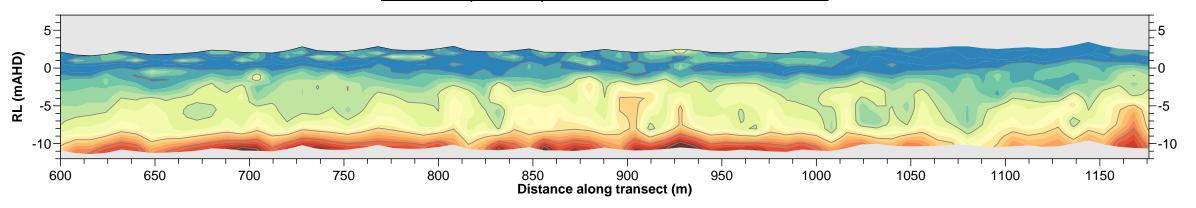
SEISMIC S-WAVE VELOCITY (m/s)

INTERPRETED MATERIAL TYPE

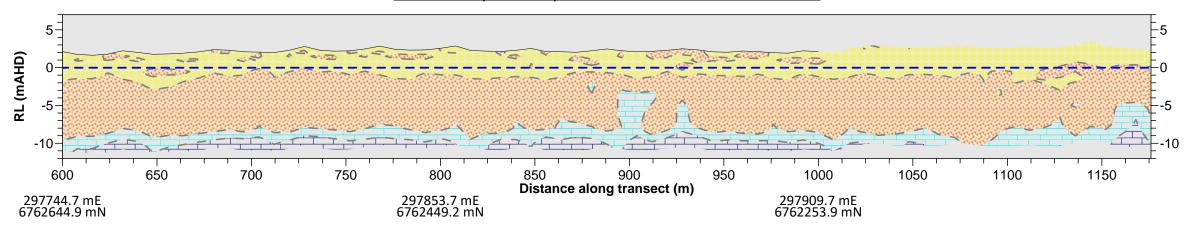


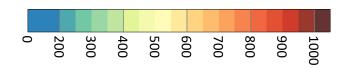
0m AUSTRALIAN HEIGHT DATUM

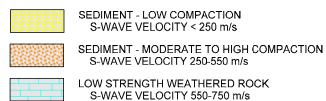
CONE PENETRATION TEST



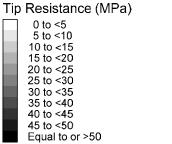
45 to <50


Equal to or >50


TRANSECT 1 (600-1176m) - SEISMIC SHEAR WAVE VELOCITY MODEL

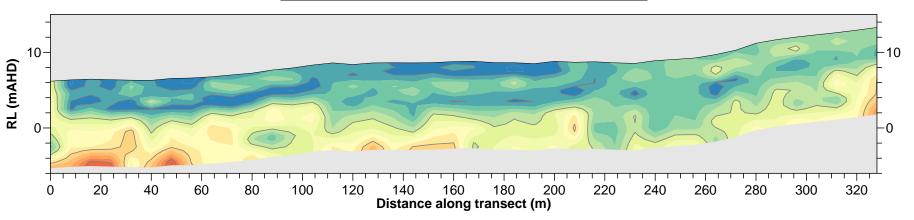

TRANSECT 1 (600-1176m) - INTERPRETED GEOLOGICAL SECTION

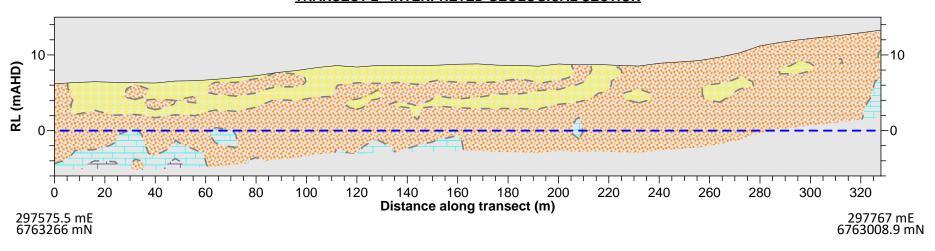
SEISMIC S-WAVE VELOCITY (m/s)

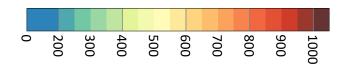


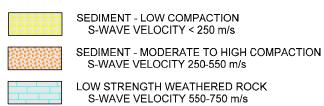
INTERPRETED MATERIAL TYPE

MODERATE STRENGTH COMPETENT ROCK S-WAVE VELOCITY > 750 m/s.


CONE PENETRATION TEST


0m AUSTRALIAN HEIGHT DATUM


TRANSECT 2 - SEISMIC SHEAR WAVE VELOCITY MODEL


TRANSECT 2 - INTERPRETED GEOLOGICAL SECTION

SEISMIC S-WAVE VELOCITY (m/s)

INTERPRETED MATERIAL TYPE

MODERATE STRENGTH COMPETENT ROCK S-WAVE VELOCITY > 750 m/s.

--- Om AUSTRALIAN HEIGHT DATUM

CONE PENETRATION TEST

$\overline{\mathbf{v}}$	<u> </u>
Τiμ	Resistance (MPa)
	0 to <5
	5 to <10
	10 to <15
	15 to <20
	20 to <25
	25 to <30
	30 to <35
	35 to <40
	40 to <45
	45 to <50
	Egual to or >50

NOTES

Drawing to be used in conjunction with Report 3177A. Positioning is given in GDA2020 zone 50. Levels are given in Australian Height Datum (AHD).

ENT	DEPARTMENT OF TRANSPORT, WESTERN AUSTRALIA
	GEOTECHNICAL INVESTIGATION FOR COASTAL
	EROSION VULNERABILITY ASSESSMENT.
	DONGARA AND PORT DENISON, SHIRE OF IRWIN WA

Drawing to be used in conjunction with Report 3177A. Positioning is given in GDA2020 zone 50. Levels are given in Australian Height Datum (AHD).

GEOTECHNICAL INVESTIGATION FOR COASTAL EROSION VULNERABILITY ASSESSMENT DONGARA AND PORT DENISON, SHIRE OF IRWIN WESTERN AUSTRALIA

Date

Scale

Drawing

27 October 2025

1:1500H, 1:500V

3177A-06

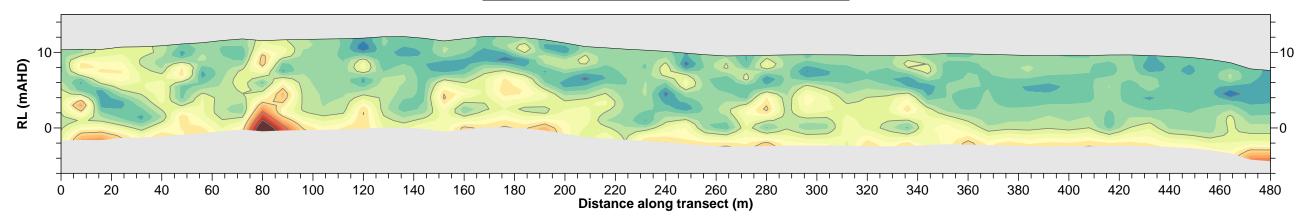
Paper Size

Drawn

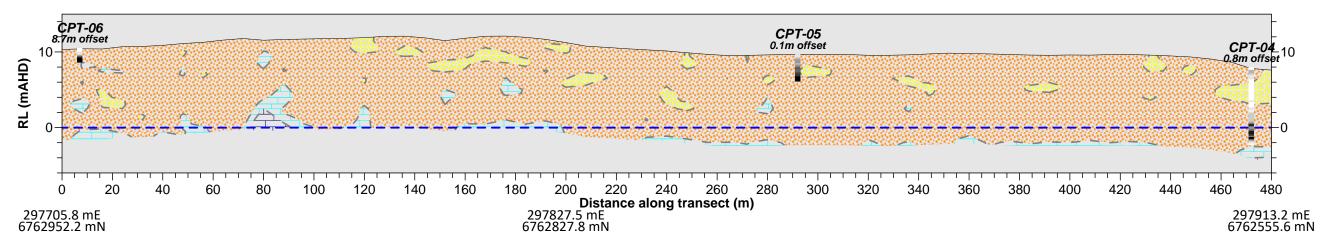
Revision

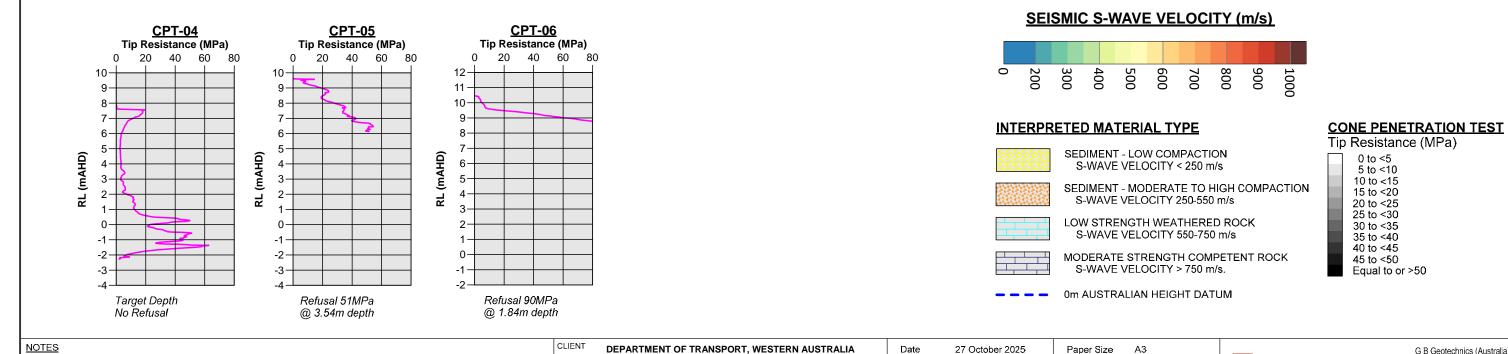
A3

G B Geotechnics (Australia) Pty Ltd


1/11 Gympie Way Willetton WA 6155 ABN: 77 009 550 869

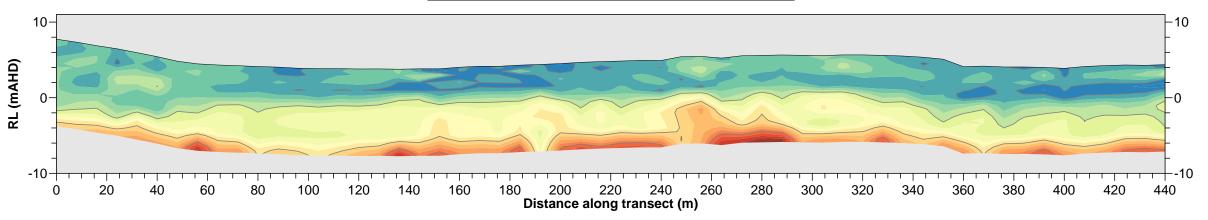
Telephone: 02 9890 2122


Email: info@gbgoz.com.au

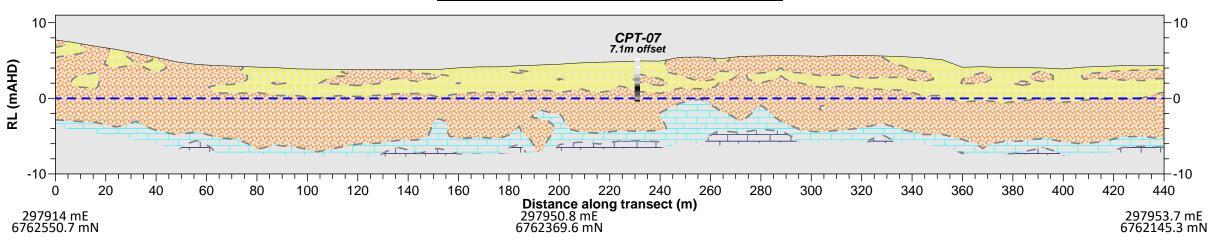

GBGGROUP

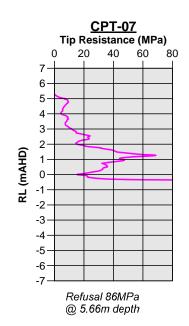
TRANSECT 3 - SEISMIC SHEAR WAVE VELOCITY MODEL

TRANSECT 3 - INTERPRETED GEOLOGICAL SECTION

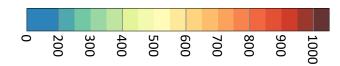

GEOTECHNICAL INVESTIGATION FOR COASTAL

EROSION VULNERABILITY ASSESSMENT.

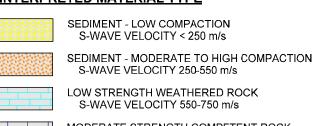

DONGARA AND PORT DENISON, SHIRE OF IRWIN WA



TRANSECT 4 - SEISMIC SHEAR WAVE VELOCITY MODEL



TRANSECT 4 - INTERPRETED GEOLOGICAL SECTION



SEISMIC S-WAVE VELOCITY (m/s)

INTERPRETED MATERIAL TYPE

- - - 0m AUSTRALIAN HEIGHT DATUM

CONE PENETRATION TEST

TIP Resistance (IVIPa)					
	0 to <5				
	5 to <10				
	10 to <15				
	15 to <20				
	20 to <25				
	25 to <30				
	30 to <35				
	35 to <40				
	40 to <45				
	45 to <50				
	Equal to or >50				

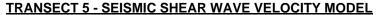
NOTES

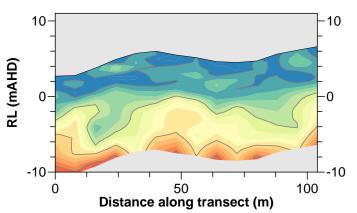
Drawing to be used in conjunction with Report 3177A. Positioning is given in GDA2020 zone 50. Levels are given in Australian Height Datum (AHD).

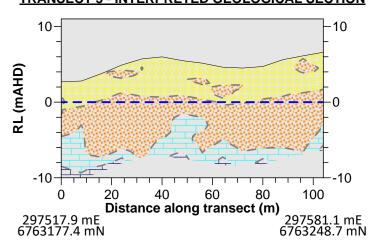
CLIENT DEPARTMENT OF TRANSPORT, WESTERN AUSTRALIA

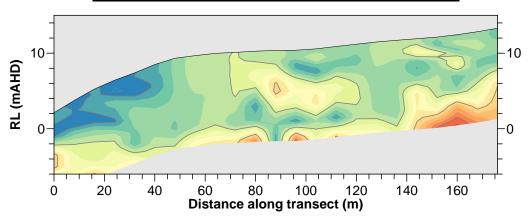
GEOTECHNICAL INVESTIGATION FOR COASTAL
EROSION VULNERABILITY ASSESSMENT.
DONGARA AND PORT DENISON, SHIRE OF IRWIN WA

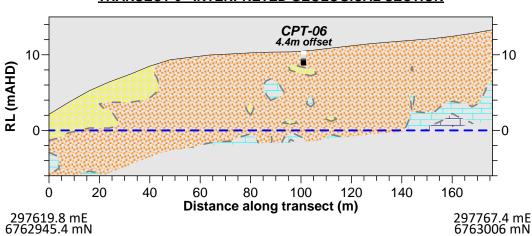
 Date
 27 October 2025
 Paper Size
 A3

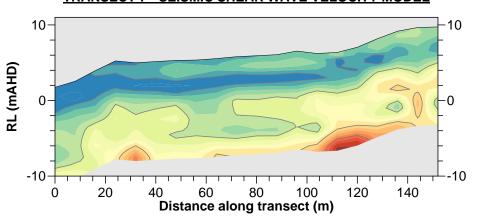

 Scale
 1:1500H, 1:500V
 Drawn
 PJE

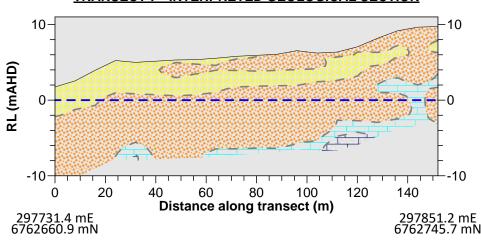

 Drawing
 3177A-07
 Revision
 0

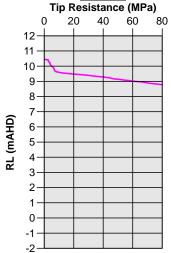

G B Geotechnics (Australia) Pty Ltd 1/11 Gympie Way Willetton WA 6155 ABN: 77 009 550 869 Telephone: 02 9890 2122 Email: info@gbgoz.com.au



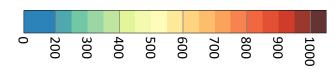

TRANSECT 5 - INTERPRETED GEOLOGICAL SECTION


TRANSECT 6 - SEISMIC SHEAR WAVE VELOCITY MODEL


TRANSECT 6 - INTERPRETED GEOLOGICAL SECTION


TRANSECT 7 - SEISMIC SHEAR WAVE VELOCITY MODEL

TRANSECT 7 - INTERPRETED GEOLOGICAL SECTION



CPT-06

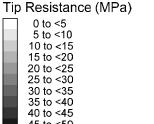
Refusal 90MPa @ 1.84m depth

SEISMIC S-WAVE VELOCITY (m/s)

INTERPRETED MATERIAL TYPE

SEDIMENT - LOW COMPACTION S-WAVE VELOCITY < 250 m/s

SEDIMENT - MODERATE TO HIGH COMPACTION S-WAVE VELOCITY 250-550 m/s


OW STRENGTH WEATHERED ROCK S-WAVE VELOCITY 550-750 m/s

MODERATE STRENGTH COMPETENT ROCK S-WAVE VELOCITY > 750 m/s.

CONE PENETRATION TEST

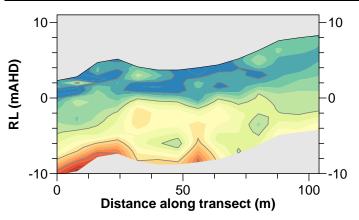
45 to <50 Equal to or >50

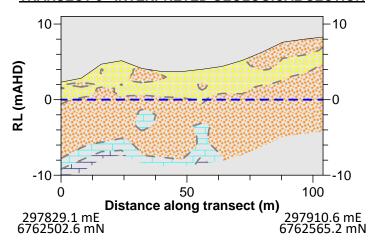
0m AUSTRALIAN HEIGHT DATUM

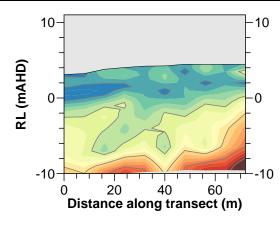
Drawing to be used in conjunction with Report 3177A. Positioning is given in GDA2020 zone 50. Levels are given in Australian Height Datum (AHD).

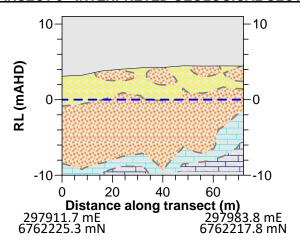
DEPARTMENT OF TRANSPORT, WESTERN AUSTRALIA **GEOTECHNICAL INVESTIGATION FOR COASTAL** EROSION VULNERABILITY ASSESSMENT. DONGARA AND PORT DENISON, SHIRE OF IRWIN WA

CLIENT


Date 27 October 2025 Paper Size A3 1:1500H, 1:500V Scale Drawn Drawing 3177A-08 Revision


G B Geotechnics (Australia) Pty Ltd 1/11 Gympie Way Willetton WA 6155 ABN: 77 009 550 869 Telephone: 02 9890 2122 Email: info@gbgoz.com.au


TRANSECT 8 - SEISMIC SHEAR WAVE VELOCITY MODEL


TRANSECT 8 - INTERPRETED GEOLOGICAL SECTION

TRANSECT 9 - SEISMIC SHEAR WAVE VELOCITY MODEL

TRANSECT 9 - INTERPRETED GEOLOGICAL SECTION

INTERPRETED MATERIAL TYPE

SEDIMENT - LOW COMPACTION S-WAVE VELOCITY < 250 m/s

SEDIMENT - MODERATE TO HIGH COMPACTION S-WAVE VELOCITY 250-550 m/s

LOW STRENGTH WEATHERED ROCK S-WAVE VELOCITY 550-750 m/s

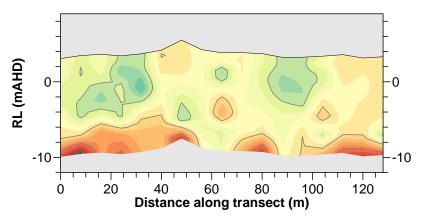
MODERATE STRENGTH COMPETENT ROCK S-WAVE VELOCITY > 750 m/s.

0m AUSTRALIAN HEIGHT DATUM

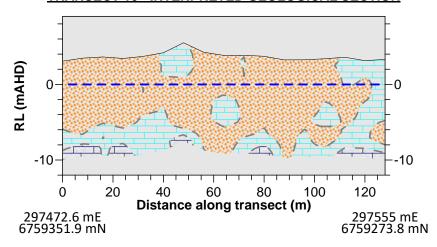
CONE PENETRATION TEST

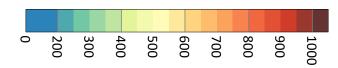
Tip Resistance (MPa)

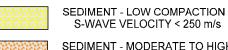
0 to <5 5 to <10 10 to <15 15 to <20 20 to <25 25 to <30 30 to <35 35 to <40


40 to <45 45 to <50

Equal to or >50


DEPARTMENT OF TRANSPORT, WESTERN AUSTRALIA


TRANSECT 10 - SEISMIC SHEAR WAVE VELOCITY MODEL


TRANSECT 10 - INTERPRETED GEOLOGICAL SECTION

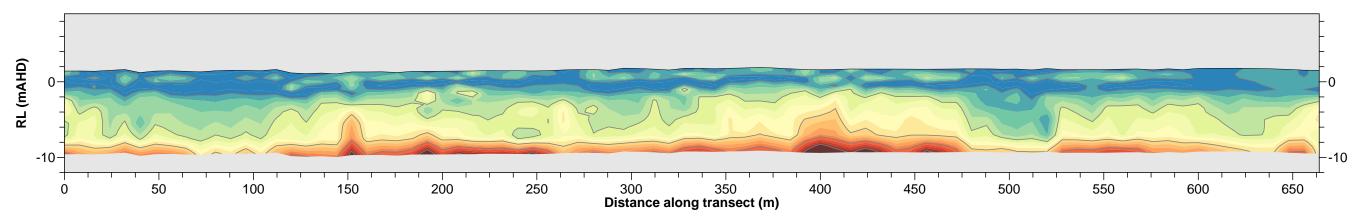
SEISMIC S-WAVE VELOCITY (m/s)

INTERPRETED MATERIAL TYPE

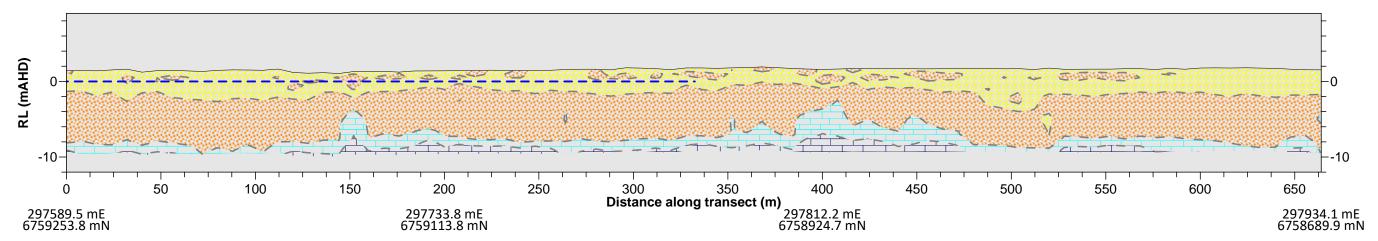
SEDIMENT - MODERATE TO HIGH COMPACTION S-WAVE VELOCITY 250-550 m/s

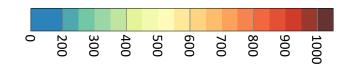
MODERATE STRENGTH COMPETENT ROCK S-WAVE VELOCITY > 750 m/s.

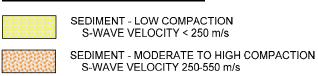
CONE PENETRATION TEST


Tip Resistance (MPa) 0 to <5 5 to <10 10 to <15 15 to <20 20 to <25 25 to <30 30 to <35 35 to <40 40 to <45 45 to <50

Equal to or >50

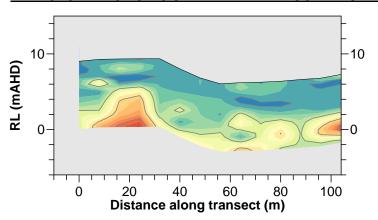

0m AUSTRALIAN HEIGHT DATUM


TRANSECT 11 - SEISMIC SHEAR WAVE VELOCITY MODEL

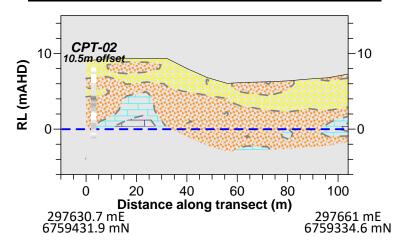

TRANSECT 11 - INTERPRETED GEOLOGICAL SECTION

SEISMIC S-WAVE VELOCITY (m/s)

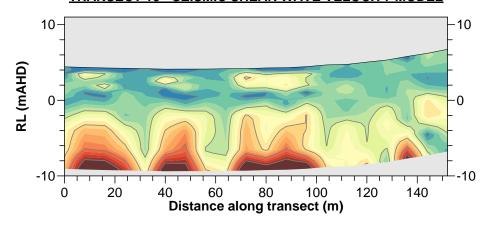
INTERPRETED MATERIAL TYPE


CONE PENETRATION TEST Tip Resistance (MPa)

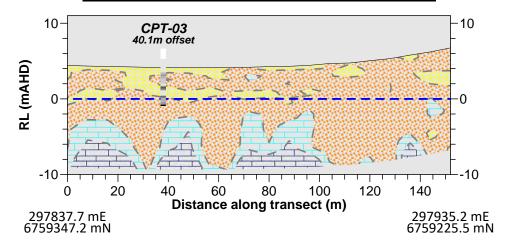
rip resistance (wir a)						
	0 to <5					
	5 to <10					
	10 to <15					
	15 to <20					
	20 to <25					
	25 to <30					
	30 to <35					
	35 to <40					
	40 to <45					
	45 to <50					
	Equal to or >50					


0m AUSTRALIAN HEIGHT DATUM

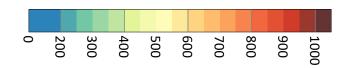
TRANSECT 12 - SEISMIC SHEAR WAVE VELOCITY MODEL

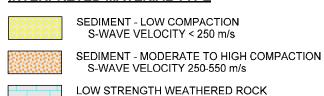


TRANSECT 12 - INTERPRETED GEOLOGICAL SECTION

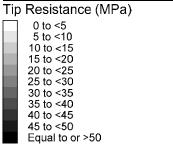


CPT-02 CPT-03 Tip Resistance (MPa) Tip Resistance (MPa) 20 40 60 80 20 40 60 0 10-RL (mAHD) RL (mAHD) Target Depth Refusal 64MPa No Refusal @ 7.50m depth


TRANSECT 13 - SEISMIC SHEAR WAVE VELOCITY MODEL


TRANSECT 13 - INTERPRETED GEOLOGICAL SECTION

SEISMIC S-WAVE VELOCITY (m/s)


INTERPRETED MATERIAL TYPE

MODERATE STRENGTH COMPETENT ROCK S-WAVE VELOCITY > 750 m/s.

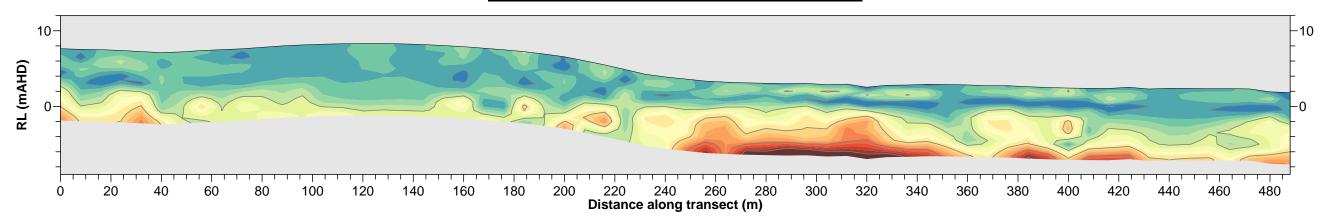
S-WAVE VELOCITY 550-750 m/s

CONE PENETRATION TEST

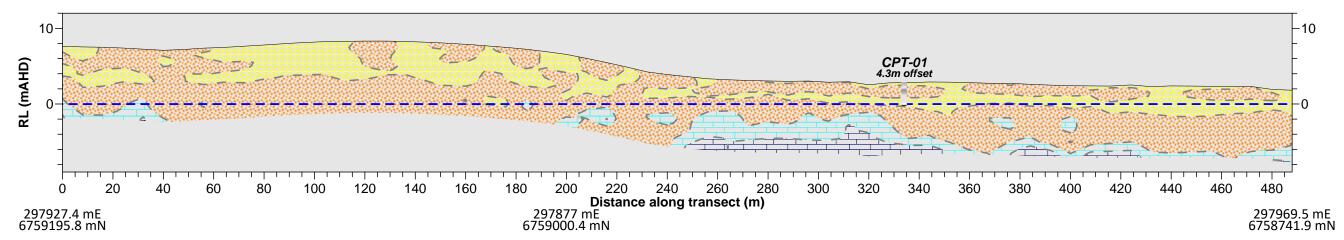
0m AUSTRALIAN HEIGHT DATUM

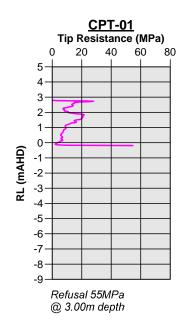
Drawing to be used in conjunction with Report 3177A. Positioning is given in GDA2020 zone 50. Levels are given in Australian Height Datum (AHD).

DEPARTMENT OF TRANSPORT, WESTERN AUSTRALIA **GEOTECHNICAL INVESTIGATION FOR COASTAL EROSION VULNERABILITY ASSESSMENT.** DONGARA AND PORT DENISON, SHIRE OF IRWIN WA


CLIENT

Date 24 October 2025 Paper Size A3 1:2000H, 1:500V Scale Drawn Drawing 3177A-12 Revision





TRANSECT 14 - SEISMIC SHEAR WAVE VELOCITY MODEL

TRANSECT 14 - INTERPRETED GEOLOGICAL SECTION

INTERPRETED MATERIAL TYPE

SEDIMENT - LOW COMPACTION S-WAVE VELOCITY < 250 m/s

SEDIMENT - MODERATE TO HIGH COMPACTION S-WAVE VELOCITY 250-550 m/s

LOW STRENGTH WEATHERED ROCK S-WAVE VELOCITY 550-750 m/s

> MODERATE STRENGTH COMPETENT ROCK S-WAVE VELOCITY > 750 m/s.

0m AUSTRALIAN HEIGHT DATUM

CONE PENETRATION TEST Tip Resistance (MPa)

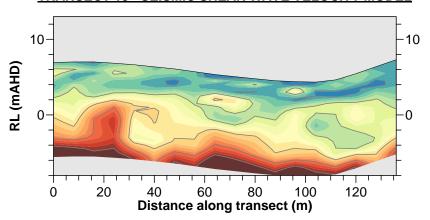
0 to <5
5 to <10
10 to <15
15 to <20
20 to <25
25 to <30
30 to <35
35 to <40
40 to <45

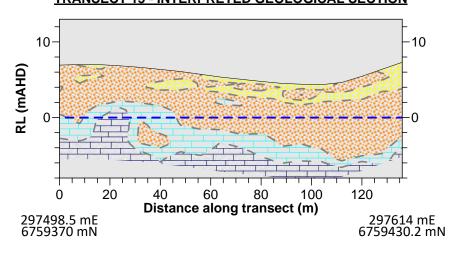
45 to <50 Equal to or >50

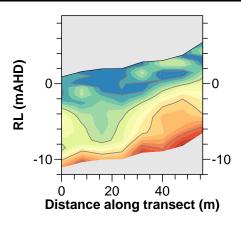
Drawing to be used in conjunction with Report 3177A. Positioning is given in GDA2020 zone 50. Levels are given in Australian Height Datum (AHD).

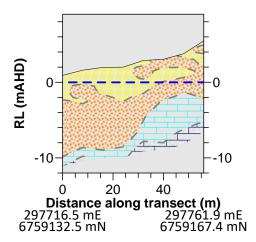
DEPARTMENT OF TRANSPORT, WESTERN AUSTRALIA **GEOTECHNICAL INVESTIGATION FOR COASTAL** EROSION VULNERABILITY ASSESSMENT. DONGARA AND PORT DENISON, SHIRE OF IRWIN WA

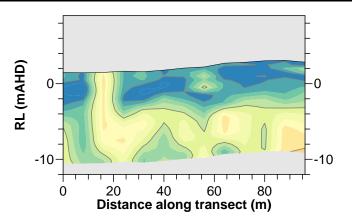
CLIENT

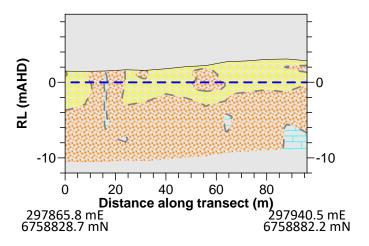

Date 24 October 2025 Paper Size A3 1:2000H, 1:500V Scale Drawn Drawing 3177A-13 Revision

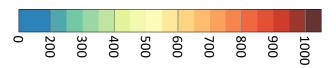

G B Geotechnics (Australia) Pty Ltd 1/11 Gympie Way Willetton WA 6155 ABN: 77 009 550 869 Telephone: 02 9890 2122 Email: info@gbgoz.com.au

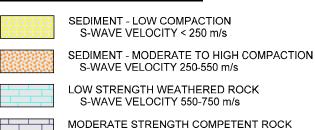

TRANSECT 15 - SEISMIC SHEAR WAVE VELOCITY MODEL


TRANSECT 15 - INTERPRETED GEOLOGICAL SECTION

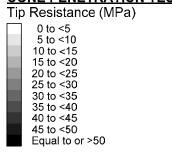

TRANSECT 16 - SEISMIC SHEAR WAVE VELOCITY MODEL


TRANSECT 16 - INTERPRETED GEOLOGICAL SECTION


TRANSECT 17 - SEISMIC SHEAR WAVE VELOCITY MODEL


TRANSECT 17 - INTERPRETED GEOLOGICAL SECTION

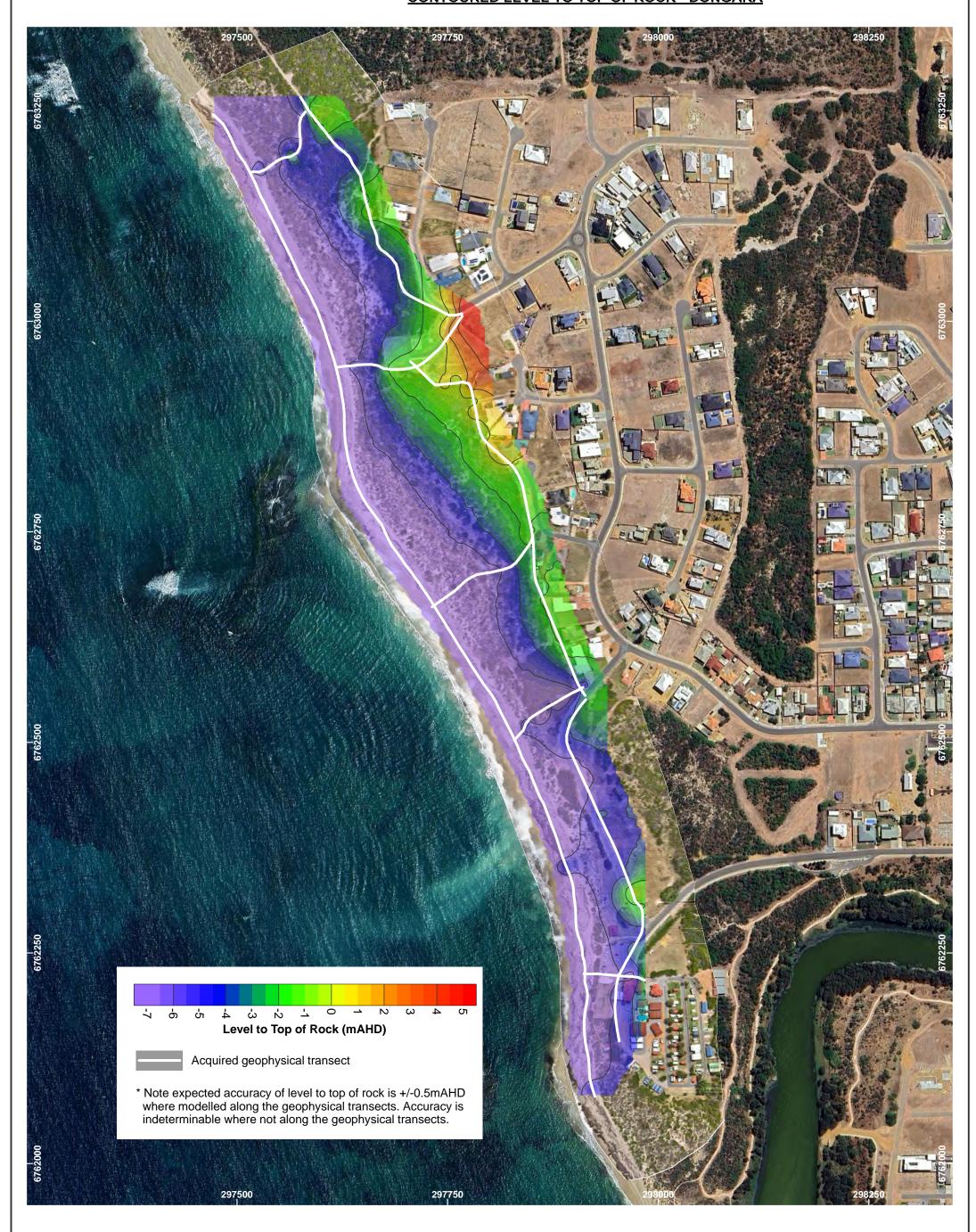
SEISMIC S-WAVE VELOCITY (m/s)


INTERPRETED MATERIAL TYPE

S-WAVE VELOCITY > 750 m/s.

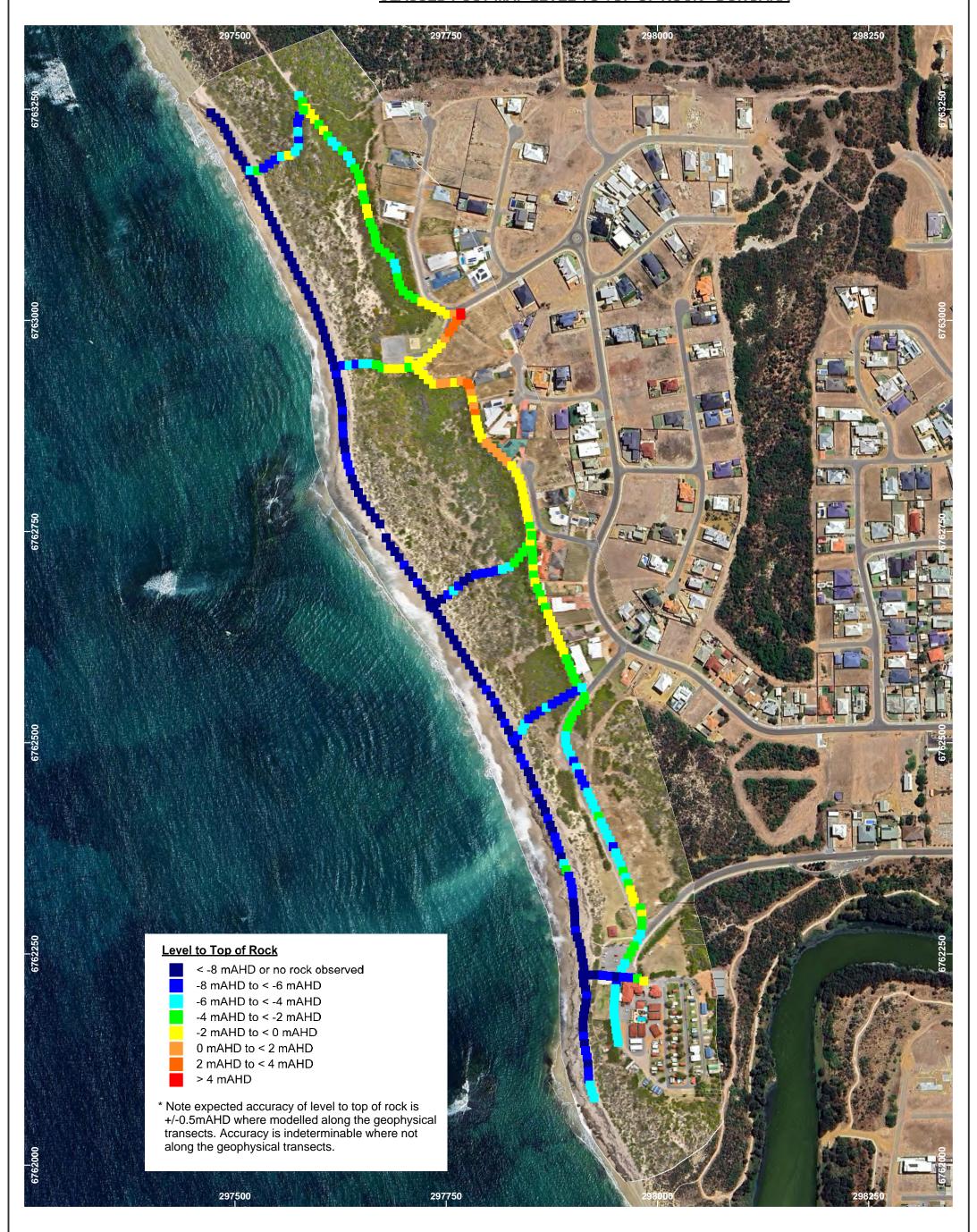
- - 0m AUSTRALIAN HEIGHT DATUM

CONE PENETRATION TEST

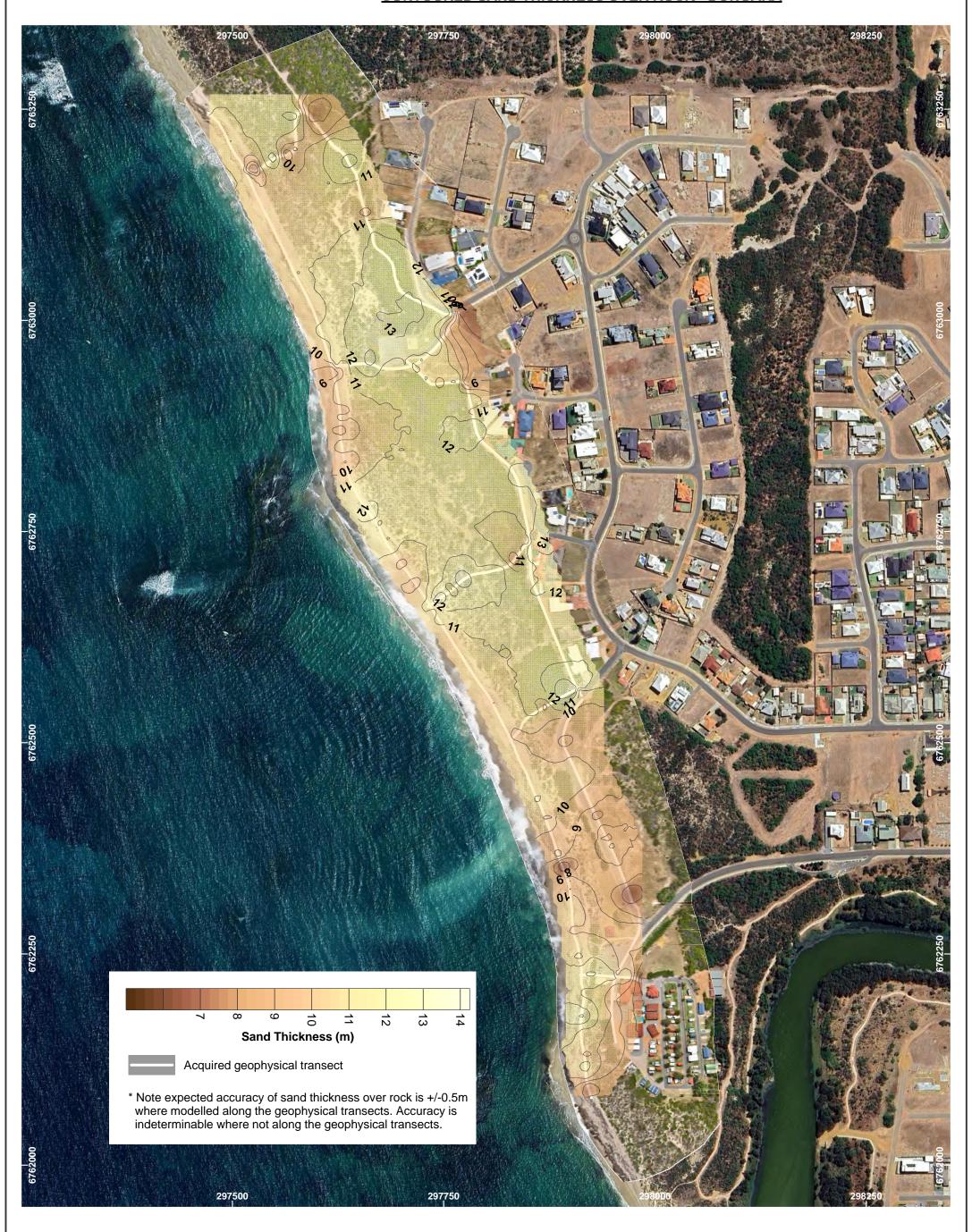

DEPARTMENT OF TRANSPORT, WESTERN AUSTRALIA

CONTOURED LEVEL TO TOP OF ROCK - DONGARA

Drawing to be used in conjunction with GBG report 3177A.

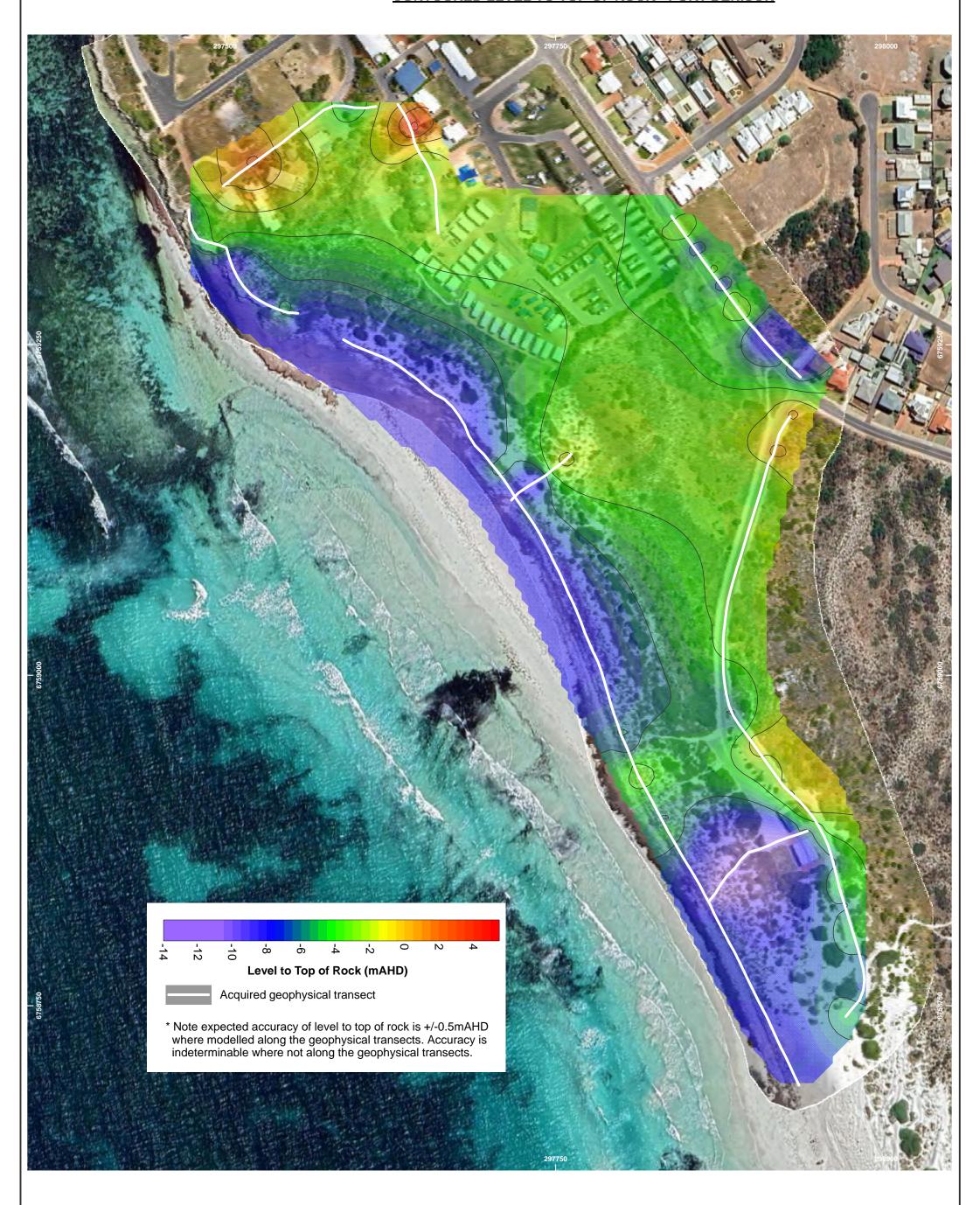

Map Projection GDA2020 MGA Zone 50.
Aerial image from Google Earth Pro and GBG photogrammetry.

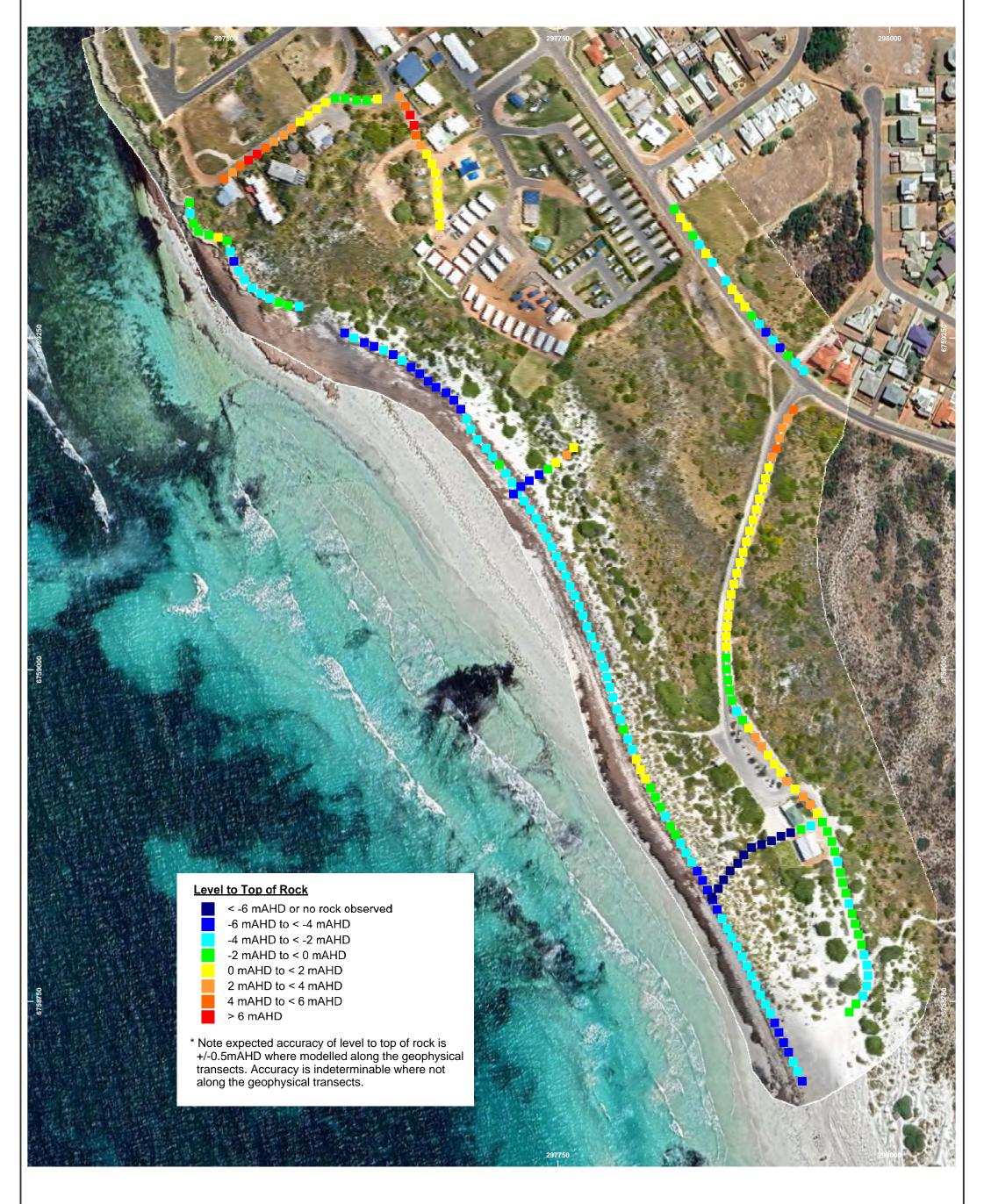
Date	13 November 2025	Paper Size	A3
Scale	1:2500	Drawn	PJE
Drawing	3177A-16	Revision	0


CLASSED POST MAP LEVEL TO TOP OF ROCK - DONGARA

CONTOURED SAND THICKNESS OVER ROCK - DONGARA

Date	13 November 2025	Paper Size	A3
Scale	1:2500	Drawn	PJE
Drawing	3177A-18	Revision	0


CLASSED POST MAP SAND THICKNESS OVER ROCK - DONGARA


CONTOURED LEVEL TO TOP OF ROCK - PORT DENISON

ICLASSED POST MAP LEVEL TO TOP OF ROCK - PORT DENISON

Date	13 November 2025	Paper Size	A3
Scale	1:2500	Drawn	PJE
Drawing	3177A-22	Revision	0

CONTOURED SAND THICKNESS OVER ROCK - PORT DENISON

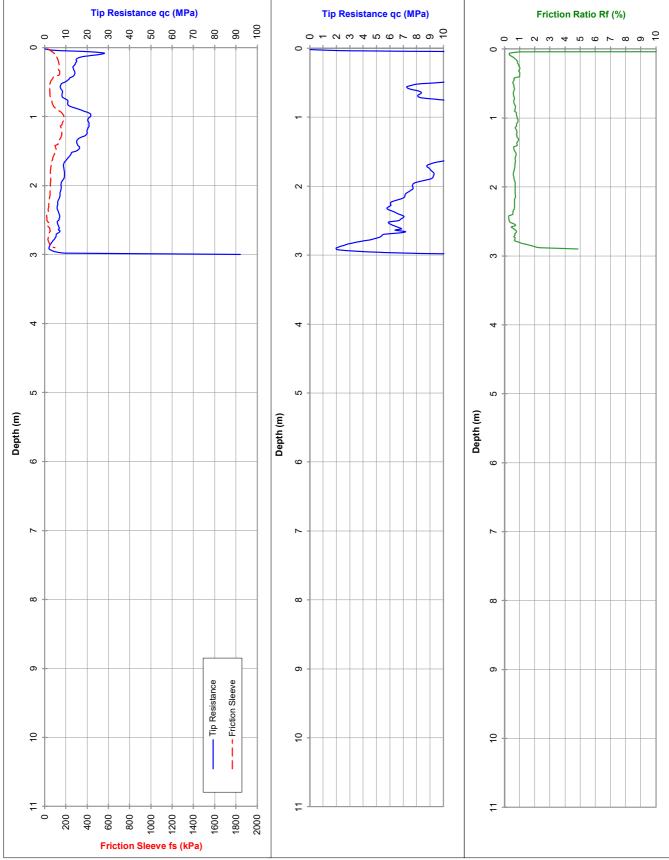
Date	13 November 2025	Paper Size	A3
Scale	1:2500	Drawn	PJE
Drawing	3177A-22	Revision	0

CLASSED POST MAP SAND THICKNESS OVER ROCK - PORT DENISON

Date	13 November 2025	Paper Size	A3
Scale	1:2500	Drawn	PJE
Drawing	3177A-24	Revision	0

APPENDIX D - CONE PENETRATION TEST PLOTS

CLIENT: GBG Group Job No.: 3177


PROJECT: Coastal Survey Stage 4 RL (m):

LOCATION: Port Denison and Dongara Beaches Co-ords:

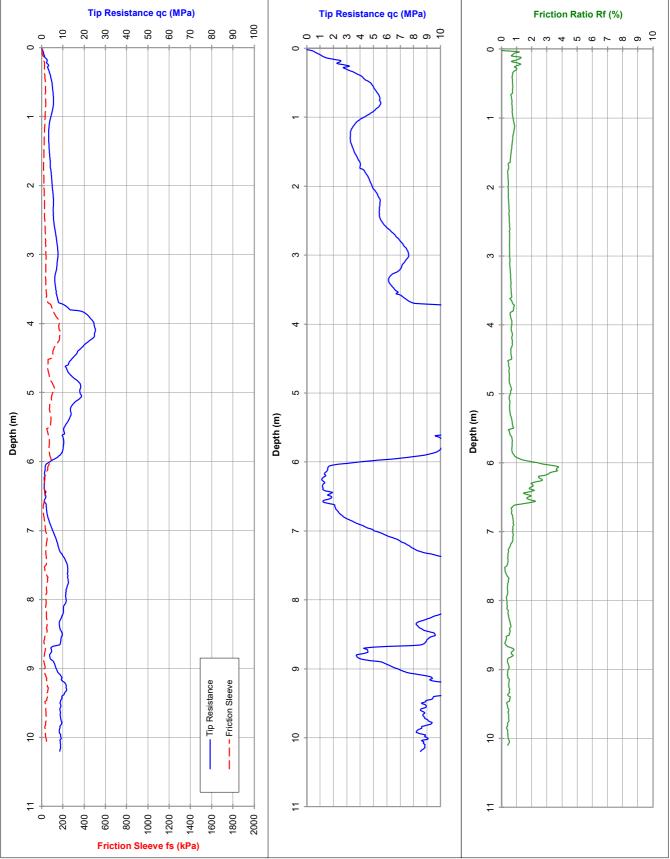
Probe I.D

CPT 01

20-Oct-25

and IRTP 2001 for friction reducer

CLIENT: GBG Group Job No.: 3177


PROJECT: Coastal Survey Stage 4 RL (m):

LOCATION: Port Denison and Dongara Beaches Co-ords:

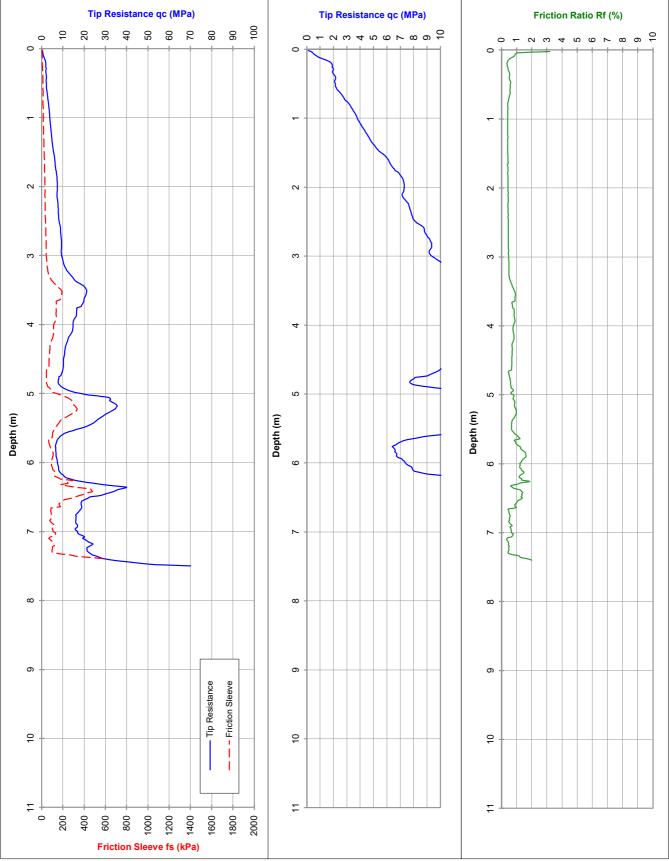
Probe I.D

CPT 02

20-Oct-25

and IRTP 2001 for friction reducer

CLIENT: GBG Group Job No.: 3177


PROJECT: Coastal Survey Stage 4 RL (m):

LOCATION: Port Denison and Dongara Beaches Co-ords:

Probe I.D

CPT 03

20-Oct-25

and IRTP 2001 for friction reducer

Approx. water (m): Dry to 7.5

Dummy probe to (m):

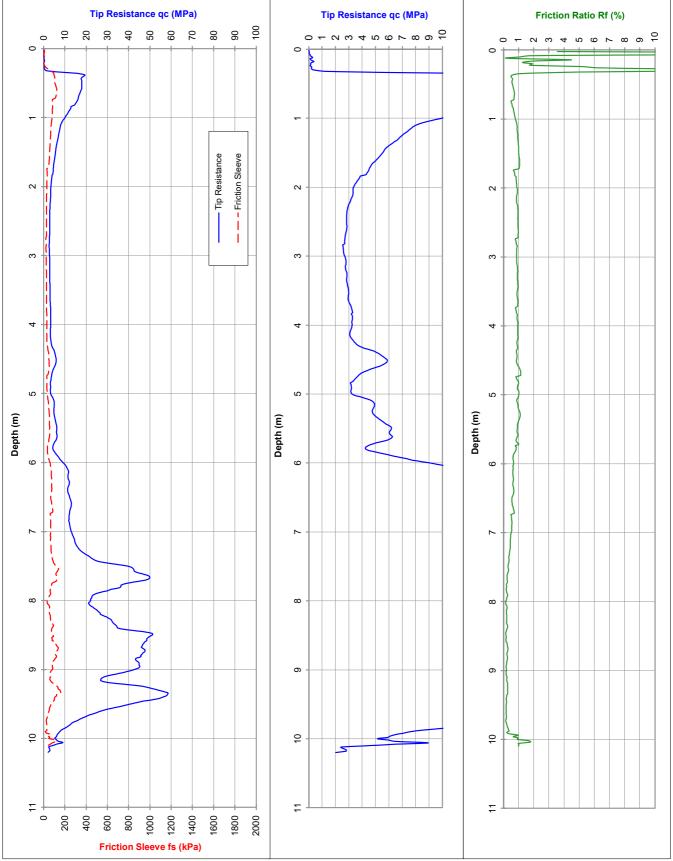
Refusal: 70 MPa + Rod Friction

Cone I.D.: EC33

File: GB0113M1

Rig Type: 12t track (M1)

CLIENT: GBG Group Job No.: 3177


PROJECT: Coastal Survey Stage 4 RL (m):

LOCATION: Port Denison and Dongara Beaches Co-ords:

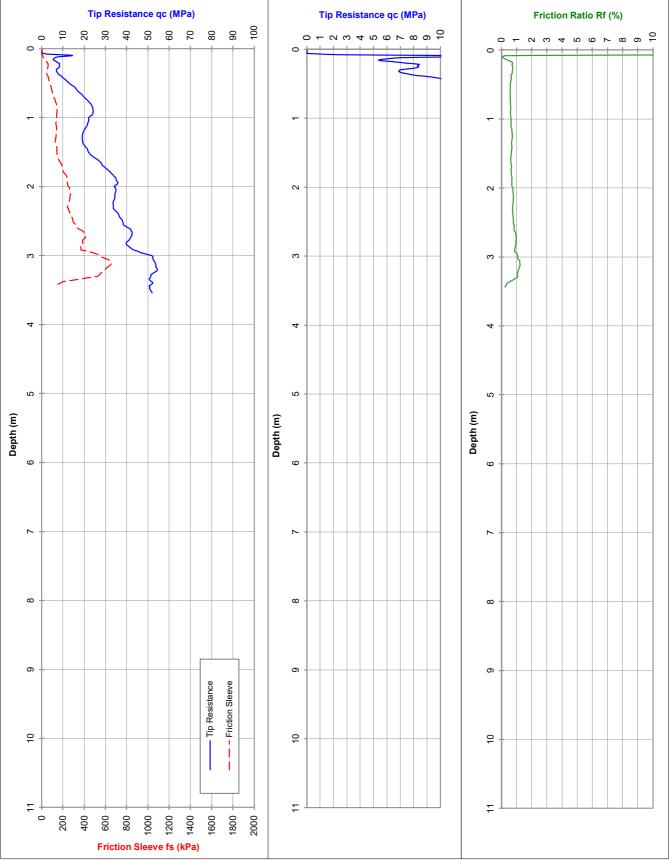
Probe I.D

CPT 04

21-Oct-25

and IRTP 2001 for friction reducer

CLIENT: GBG Group Job No.: 3177


PROJECT: Coastal Survey Stage 4 RL (m):

LOCATION: Port Denison and Dongara Beaches Co-ords:

Probe I.D

CPT 05

21-Oct-25

and IRTP 2001 for friction reducer

Approx. water (m): Dry to 3.5

Dummy probe to (m):

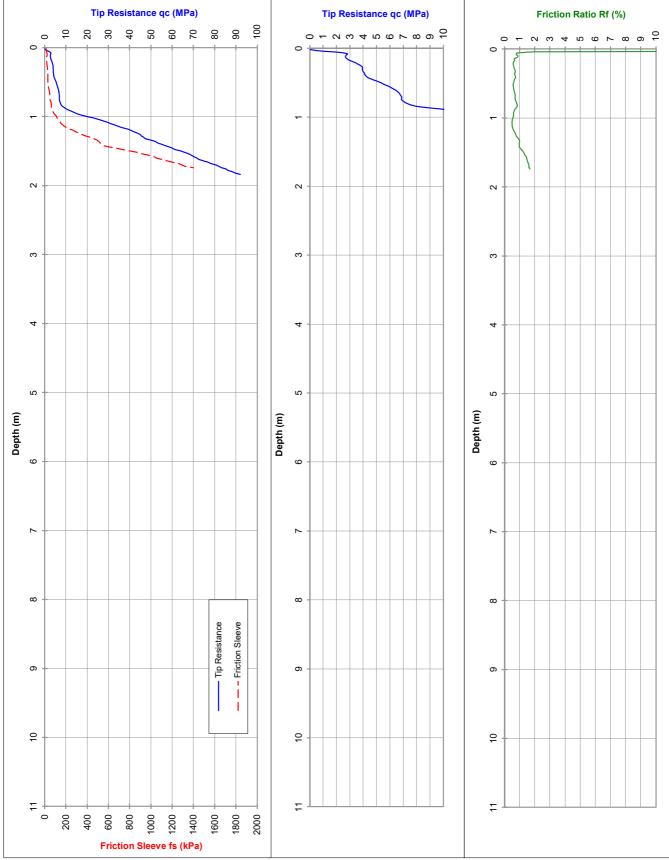
Refusal: 52 MPa + Rod Friction

Cone I.D.: EC33

File: GB0114M1

Rig Type: 12t track (M1)

CLIENT: GBG Group Job No.: 3177


PROJECT: Coastal Survey Stage 4 RL (m):

LOCATION: Port Denison and Dongara Beaches Co-ords:

Probe I.D

CPT 06

21-Oct-25

and IRTP 2001 for friction reducer

Approx. water (m): Dry to 1.6

Dummy probe to (m):

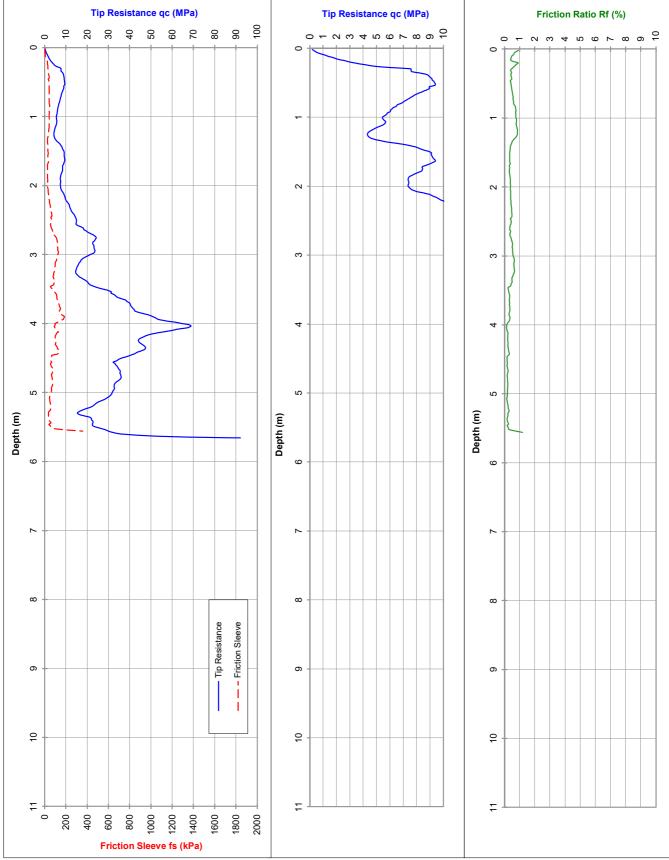
Refusal: 92 MPa

Cone I.D.: EC33

File: GB0116MT

Rig Type: 22t truck (M1-Truck)

CLIENT: GBG Group Job No.: 3177


PROJECT: Coastal Survey Stage 4 RL (m):

LOCATION: Port Denison and Dongara Beaches Co-ords:

Probe I.D

CPT 07

21-Oct-25

and IRTP 2001 for friction reducer

Approx. water (m): Dry to 3.2

Dummy probe to (m):

Refusal: 92 MPa

Cone I.D.: EC33

File: GB0117MT

Rig Type: 22t truck (M1-Truck)